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PREFACE

Starting in the late 1960's the Naval Air Systems Command
foresaw a need for development of antenna arrays that could mount
flush with the skin of an airframe or missile, and the Conformal

Array Antenna (CAA) program was started. Not only can a CAA
eliminate the conventional radome and its structural problems,
but the mechanical steering/gimballing is replaced by rapid

inertialess electronic scanning. At that time planar phased

array mutual impedance effects such as 'blind spots' were being

vigorously investigated. It was recognized that the CAA devel-
opment cycle could profit from much of the planar array work,
but that there were problems unique to curved surfaces that must

be solved. As expected, a satisfactory understanding of mutual

coupling in planar arrays was developed by the early 1970's,

including compensation techniques for both wide angle scan and
wide bandwidth, along with the necessary computational tools.
Subsequent work cn planar arrays ha bcern concentrated on corn-
ponents and feed techniques.

The CAA program had as an initial goal the understanding of

radiation processes from an array of slots on a conical metal
surface and the computation of these effects. This initial goal

was perhaps overly ambitious but it served as a useful vehicle

for attacking the geometry, lattice, and polarization problems.
In the next several years an understanding of these facets of

the overall problem was developed for cylinders and cones. But
the computation of mutual coupling and its effects proved to be

extremely difficult. The calculation of patterns, although
mathematically simpler, involves some of the same computational
difficulties. And a satisfactory solution for both mutual coup-

ling and radiation patterns is essential to allow effective
design of arrays. Satisfactory results were finally obtained in

a combination of harmonic series solutions and GTD solutions,
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with each used in the regime of variables where it is most

accurate. The CAA program has concluded with measurements on
experimental antennas.

During these developments, several symposia were held to

facilitate technical interchange among those working on CAA.
The first was a Conformal Array Antenna Conference (1970) held

in January at NELC (now NOSC), San Diego. A closely related

symposium on Phased Array Antennas (1972) was sponsored by
ABMDA in 1970 at PIB, Farmingdale, New York; a session on con-

formal arrays was included. Another meeting was the February
Array Antenna Conference, (1972) held again at NELC. This meet-

ing also had much material on CAA. The most recent was held in
April at Crystal City, Virginia, a workshop on Conformal Antennas
(1975).

The organizations that have been involved in the Naval

Conformal Antenna Array program are listed here, in an approx-

imate chronological order.

Naval Air Systems Command
J. W. Willis, Project Manager
H. J. Mueller

Hughes Aircraft, Culver City
W. H. Kummer
A. T. Villeneueve
P. T. Bargeliotes
A. F. Seaton
M. C. Behnke
F. G. Terrio

General Dynamics, San Diego* I

G. Tricoles
E. L. Rope

Polytechnic Institute of New York

A. Hessel
L. E. Felsen
J. Shapira
Z. W. Chang
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Naval Ocean Systems Center

J. H. Provencher
Guy Vaughn
A. D. Munger
J. E. Boyns
R. L. Mather
S. M. Sterling
W. V. King

Naval Research Laboratories
J. K. Hsiao
J.B.L. Rao

Aerospace Corporation

G. E. Stewart
D. C. Pridmore-Brown
K. E. Golden

University of Illinois, Electromagnetic Lab.

S. H. Lee
R. Mittra
G. Deschamps
J. Boersma

SThe purpose of this Handbook is to make available in one
place the design information developed under the CAA program.

As feasible, this information has been supplemented by other
related unclassified material and references.
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INTRODUCTION

Conformal arrays are valuable whenever an antenna must be
located on a surface, be it the skin of a missile, an RPV or
aircraft, or the nose of an artillery round or re-entry vehicle.
Even ships have large curved surfaces that can mount array anten-
nas. Conforming the array to the surface not only saves space
and allows rapid inertialess scan but often is essential for
structural reasons. A number of different CAA types are possible,
but these seem to fit roughly three categories:

(1) low gain antennas for small missiles and
artillery rounds;

(2) fuselage mounted ECM arrays for aircraft;
(3) electronically scanned arrays covering wide angles.

In the first of these CAA's, typically a pair of printed circuit
iwrap around' slots with shallow cavities are emplaced around
the cylinder; two or more are used to give adequate circumfer-

ential response (Schaubert et al, 1979). The second is also a
CAA, and is typically a small array located on the side or belly
of an aircraft. Limited scanning is used. The fuselage curva-
ture here is a minor factor in the array design and performance
(Mailloux, 1977). With the third type, with which this handbook
is exclusively concerned, the curvature of the body plays a per-
vasive role, and the azimuth scan is large, often 360 deg. It
is useful to compare such arrays with planar arrays, to sharpen
up the differences between conformal and planar, as these are
the subjects of the chapters that follow. First a brief sketch
of planar array design technology is given.

Array synthesis for pencil beam patterns is best done using
the Taylor one-parameter modified sin x/x line source space
factor or the Taylor A space factor; for small arrays an itera-
tive adjustment is recommended. Higher Q distributions for equal
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level sidelobes can, use Chebyshev designs or Taylor with large

n . Shaped beams, e.g., csc 2 e are readily done with the
Woodward-Lawson series of sinc beams. In realizing these dis-
tributions the mutual coupling between all elements must be
taken into account, and of course these effects change with beam
position (scan angle) and frequency. For single mode elements,

such as dipoles, narrow slots, and patches, the Carter thin wire
dipole mutual impedance (or the Babinet equivalent admittance)
is adequate. Infinite ground plane effects are introduced by

use of image elements. Finite ground plane modifications may be
added to mutual impedance using GTD. Finally, the actual cur-
rents (voltages) are related to impressed voltages (currents)
through complex simultaneous equations over the finite array,
where the coefficients are the mutual impedances (admittances).

Thus edge effects, where edge element impedance varies different-
ly from that of center elements, are displayed. The pattern of
the array of actual currents is then multiplied by the isolated
element pattern to get the overall pattern. Multimode elements
such as open ended wavaguides present a much more difficult
problem. In principle, equations could be solved where the

of external modes used. Since the latter is often over 100, this

scheme is impractical even with powerful computers. Large arrays
can be analyzed by assuming that most elements behave as if
imbedded in an infinite array. This assumption of an infinite
array allows an immediate simplification in that a unit cell can
be constructed about each element with the unit cell bounda.
adjusted so that the single unit cell represents the entire

* array performance. The real part of active impedance is given by
the sum of propagating modes, where one mode exists for the main
beam and an additional mode fo r each grating lobe (if any). Thus
the resistance for a dipole array, or conductance for a slot array
can be readily written in closed form. Unfortunately the reac-
tive component requires an infinite series as all modes including

xiv



evanescent modes contribute to reactance. Nonetheless,.the unit
cell approach yields insights into array behavior wfth scan
angle unattainable from other approaches. The output of the unit
cell analysis is active impedance versus scan angle and frequency,
and active element pattern versus frequency. The (active) reflec-
tion coefficient may be used with the array factor (the pattern
of the array with isotropic elements) and the isolated element
pattern to get the overall pattern. Alternatively the array
factor and the active element pattern may be used to get the
overall pattern. The powerful unit cell approach allows scan
compensation devices such as waveguide plugs and dielectric
sheets to be analyzed and designed. Thus the 'blind spot' pro-
duced near grating lobe incidence when a trapped wave* is set up
along the surface of a large array is suppressed. Edge effects
in multimode arrays can be examined approximately by analyzing
an infinite array, then obtaining the coupling coefficients which
are Fourier coefficients of the unit cell mode voltages and re-
flection coefficient. These coefficients are then summed over the
finite array to give a set of mode voltages and reflection
coefficient for each element. Useful references on phased arrays
are Hansen (1964, 1966), Hansen (1968), Ia (1968), Oliner and
Knittel (1972), Amitay, Galindo and Wu (1972), Hansen (1973),
Tsandoulas and Knittel (1973), Ma (1974), and Hansen (1981).

New features are introduced by conformal arrays, and are
discussed in the chapters that follow. A special issue on con-
formal arrays (Kummer, 1974) is useful. These new features are:

element lattice - some geometries cannot be

covered by a uniform rectangular
or hexagonal lattice

* This is somewhat analogous to Brewster's angle in reflection

at a dielectric, and to Wood's anomalies in optical gratings.

xv
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element polarization . a fixed pattern polarization
projeCted on the surface may
vary from element to element,
and each may vary with main
beam angles 0, *

distribution separability - for some geometries the aperture
(array) distribution is not

constant; for example, as 0
changes both 0 and 0 distribu-
tions may change.

difference pattern - boresight may vary as e is
variability changed, for example.

mutual coupling - curved surfaces may enhance
or degrade coupling, but the
"calculation thereof is much
more difficult than for flat

surfaces.

pattern synthesis - even with the actual excitation
known (coupling fully included),

the element pattern may vary
from element to element, and is
difficult to calculate. Only
brute force numerical synthesis
techniques will give precise! results.

In all the work on CAA, it is tacitly assumed that the coordin-
ates are separable, at least in 0, the azimuth angle. Non-
separable coordinates present essentially an intractable problem.
Although most conformal arrays consist of antenna elements lo-
cated upon a metallic surface, curved arrays in free space are

sometimes used and are worthy of study as prototypes. Perhaps

xvi



the simplest curved array ir the ring array, a set of elements
disposed on a circle. The term 'circular array' is denigrated
as it can mean both a ring array and a planar array of circular
outline. Ring arrays with more than one concentric riug, or w.rth
a center element are not considered as CAA; they are special
types of planar arrays. Earth or ground effects are not con-

sidered in this Handbook; it is assumed that the CAA is in free
space.

The Handbook is in six chapters. Chapter One tzeatas con-

formal geometry and the analysis of conformal arrays of iso-
tropic elements. Projective aperture synthesis, where a known
planar distribution is projected onto the canformal surface is
the subject of Chapter Two. Harmonic modal function series are
utilized in Chapters Three and Four to calculate patterns and
active admittance of a CAA on a cylinder and on a cone. The
modal series calculation becomes unwieldy for large radii;

Geometric Theory of Diffraction is used to calculate pattern and
admittance for large radii in Chapter Five. Finally Chapter
Six describes some measurements made on conical arrays. Mater-
ial for this Handbook was supplied by the listed contributors;
it was the pleasant task of the editor to assemble and edit this

work.
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CHAPTER 1

CONFORMAL GEOMETRY

1. 0 INTRODUCTION

This Chapter is concerned with the calculation of patterns
of arrays of elements located on a (virtual) curved surface.
Effects of a metallic surface will be considered in later
Chapters. In this Chapter the emphasis is on lattice, grating
lobe, and polarization features of a conformal array. Planar
arrays can be constructed with elements located on a regular
lattice; this allows the behavior of grating lobes and active
element impedance to be extensively studied in terms of element
spacing. Conformal can mean any curved surface, but only a few
separable surfaces (sphere, cylinder, cone) can be analyzed for
all dimensions. In practice, the general curved surface can be
analyzed for element impedance only when curvatures are large in
wavelengths. Thus this Handbook will be limited to arrays on

cylindrical and conical surfaces.

Because the ring array is a building block of both the
cylindrical array and the conical array, it is first discussed
in Section 1.1. Most of the early work on conformal arrays was
on ring arrays. The ring array is also a constituent of a
spherical array, but since most surfaces of practical interest
are represented by a cylinder or a cone rather than by a sphere,
the only attention paid to the latter consists of listing refer-
ences on spherical arrays. Section 1.2 covers cylindrical array
work, with Section 1.3 concerned with conical arrays. A general
purpose conformal array pattern code is the subject of the last

Section.
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1.1 Ring Array Space Factor

Analytical efforts on ring arrays existed before 1940, but
significant progress was made during World War II by Page (1948
a,b) who considered a single azimuthal Fourier mode, and by
Knudsen (1951, 1953, 1956) who analyzed a ring array as a series
of Bessel function terms and showed that the azimuthal mode number
and ring diameter must be compatible to avoid superdirectivity.
The properties of individual azimuthal modes were pursued by
Tillman and colleagues (Hickman et al, 1961; Hilburn and Hickman,
1968; Hilburn, 1969; Tillman, 1968). The last entry is a book
containing extensive modal data, both pattern and impedance.
Beam cophasal excitation, in which all elements contribute to the
main beam in phase, is almost always used. The harmonic (Bessel)
series analysis has been used for sidelobe control through exci-
tation tapering, and for pattern synthesis (James, 1965; Fenby,
1965; Royer, 1966; Longstaff et al, 1967; Biswell and Butler,
1968; Redlich, 1970; and Lim and Davies, 1975). A harmonic anal-
ysis without explicit Bessel functions has also been used (Blass,
1974) as has a polynomial approach (Gerlin, 1974). DuHamel
developed a procedure for producing Chebyshev patterns for ring
arrays (1951). Effects of ground for HF ring arrays have been
reported by Tillman et al (1955) and by Ma and Walters (1970).
An examination of current distribution on dipoles in a ring array
via moment method has been made by Sinnott and Harrington (1973).

Circular arc arrays, which are what result in practice from
using tapered excitation, are reported by Lo and colleagues (Lo
and Hsuan, 1965; Lee and Lo, 1965). Gobert and Yang (1974) con-
sider a ring array of non-parallel dipoles, as well as conical
arrays. Geometry, pattern coverage, and grating lobes in spher-
ical arrays have been investigated by Hoffman (1963), MacPhie
(1968), Chan et al (1968), Sengupta et al (1968 a and b), and
Schrank (1972). Thinned arrays on a sphere have been probabilis-
tically evaluated by Panicali and Lo (1969). Finally before

2



moving on to a brief analysis of ring arrays, the IrT!• Trans. on
Antennas and Propagation Special Issue on Conformal Antennas,
W. H. Kummer ed., (1974) should be mentioned.
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1 1.1 Continuous Ring Antenna

Assume a local 'element' pattern G where * is the azimuth
angle, and a is the angular location of the local element. A con-
tinuous current density I then produces the space factor (pattern):

E(0,0) M-w 0 I(a) G(O-a,e) da (1)

M is the number of elements which the continuous distribution
replaces. If I(a) is synmmetric, it may be written:

I(a) In cos na (2)

n-0
The In are the complex current mode amplitudes. The element fac-
tor G(O-a,O) may also be expanded as:

G(O-ae) - f(e) F(8) cos m(O-a) (3)

Substitution of (2) and (3) into (1) and integrating yields:

E(,e) - Mf() InFn() cos nO (4)

where c n = 1 if n - 0, en = 2 if n 0 0. The In are determined
from the desired azimuth pattern expanded in a Fourier series.
Call the desired pattern Tn(O) to indicate an q.th -order Chebyshev
pattern, though any pattern may be used if it can be put in the

following form:

T (_) .4 cos n# (5)
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The computation of coefficients CnN was developed by DuHamel (1951)
but his algorithm has poor accuracy for large N. Better formulas

ar3 given by Munger (1967), and inma forthcoming book (Hansen,
1981).

Equating (4) and (5) at a- 60 yields

N(e0) en Cn
'In -Mf(6) Fn(W) (6a)

and

I (a) 1 0) cos na (6b)

The superscript (60) has been introduced to emphasize that In and
I(a) give the optimum azimuth pattern Tn(O) only in the cone a -

B0. At a general elevation angle 8 the pattern is

(8o°) •= (8°)

E (0 , e) - Mf(e) in Fn(e) cos ns (7)

The choice of No - kp sin 00 avoids superdirectivit and allows
efficient excitation of azimuthal modes. Thus N(e0 - N cos e0,
where No - kp is N at e0 - 0. This selection of N(e0) gives
approximately the same amplitude distribution for all 00, and a
cophasal beam. For a given sidelobe level, the beamwidth is
approximately proportional to Thus

azimuth beamwidth - beamwidth at broadside/cos e0 (8)

This broadening of the beamwidth is only apparent, however. It is
due to the fact that the azimuth pattern is measured on a cone

5



S- , and the ratio of the perimeter of the cone base at e0 to

that at 8 - 0 is just (cos eo) 1. The actual spatial extent of

the beam in the plane perpendicular to the * - 0 plane remains

approximately constant to near zenith.

Figures I and 2 show the behavior of (8) for 80 - 0 and 8
450 The distribution is for a -50-dB Chebyshev pattern, so

only the beam shape appears in the plot (all sidelobes are at
-50 dB for 8 - 60). The extensive beam broadening (beyond the

(cos e0)-1 factor) and gain loss for 8 0 00 are due to the devia-

tion of the phase from the optimum (which is essentially -jk

cos 00 cos ap. Figure 3 shows elevation patterns through the
beam 0 - 0 direction with the azimuth pattern optimized et var-

ious 80. They are compared with the element elevation pattern,
since this represents the maximum possible for each curve. For

a linear array the curves would all coincide with the elevation
element pattern. For the ring array they coincide with the ele-

vation element pattern only at 0, where all elements add in phase

to form the beam. 0

-5

S-10 -

U" -15

0& -20
LU

S-25 -

w-3 0 -0

-35 - I 300

0 10 20 30 40 50 60
V, DEGREES

Figure 1. Ring-array pattern for 80 M 00, -50-dB continuous
Chebyshev distribution. N(90) - NO coS 800 NO - 128, and element
is axial slot in cylinder of radius p - 26.3A
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-5

" -10

w -15
0
L.-20

P -25
_j450 00,
u-30

-35 300

150
-40-

0 10 20 30 40
(p, DEGREES

Figure 2. Ring-array pattern for 0 - 450.
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-2 0

-4ELMNPATR

cu -6 0. =300

UJ -8 __

-10

~-12

-16

-18

-20 _
0 10 20 30 40 50 60

e, DEGREES

Figure 3. Ring-array elevation patterns through the beam for
azimuth pattern optimized at various 60 compared with element
elevation pattern. Parameters same as in Figure 1.

1.1.2 Discrete Ring Array

The continuous distribution can be replaced by M elements
located at

- .(p+f) p - 0,1,2, ... , H-1

where f is a fraction that indicates the position of the beam with
respect to the first element. It can be shown (see Appendix A) that

1X99) ~M ~ ~ F'(8) coo nRp + (0) coo ((r U -x) t4wrf I I
mu~n (9)



(9) is the desired pattern plus an error term. For spacing s -

2rp/m of less than a half wavelength, only the r - 0 term is sig-

nificant. For spacing less than one wavelength, only r - 0 and

r - 1 contribute, and so forth. The error term's primary contri-

bution to the pattern is in the form of a grating lobe.

1.1.3 Grating Lobea

A convenient way of evaluating the grating lobe is to repre-

sent the terms in (9) by integrals and evaluate by the method of

stationary phase (Biswell, 1968). An early approximation was

given by Walsh (1951).

The pattern for an arc array of 2P + 1 active elements is

E(0,8) Ip G(*-apf,) (10)

ptm--P

This may be written as a series of integrals according to the

Poisson sum formula. p

E(O,8) M I(a ) G(O-, *e) ej2 7rrP dp (11)

2 Y
By change of variable a - p:

E( ) - I- 1(a) G(,-aO) *JrMO d. (12)

H I~ (a) G(#-mo) coo (rMa) do

where 2a(P) is the active segment of the ring, H is the number of

elements on the full ring, and I(a) is a continuous representation

of the distribution I( p).
9
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Now substitute (10) and (6b) into (12), and let a(P) w W; it

may be shown that the rth term of (12) is identical to the rth

term of (10). The r - 0 term is just the pattern due to the con-

tinuous distribution I(a), and the higher terms are the error

introduced by letting p = M(p+f).

The method of stationary phase can be applied to evaluate

approximately the integrals in (12) - in particular to find the

contribution to the grating lobe. From (22) and (25b) the rth

integral of (12) is a(p)

"r1 (0,0) - J I(a) G(O-a,,) exp jkpu(a)dc

-U(p) (13)
where

uWx) = cos 0 cos (0-0) -cos% cos a +
* S

and s = kp/M is the interelement spacing.

The integral is to be evaluated under the assumption that

the largest contribution is from the neighborhood of the point(s)

a0 where the phase term u(c) is constant. This assumption is best

for kp large. The condition for a0 is now u'Wa) - 0, or

cos 0 sin(O-a 0 ) + cos 60 sin + r- 0 (14)

In the region around a0 since u'((a0 ) - 0,

u(a)Tu(a0) + (a-a0) u"(a0) (15)

Furthermore, if a0 is well inside the range -c(P) to a(P), the

limits may be extended to - and w. Finally, assume that I(a)

10
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and G(O-a, 6) are reasonably constant over the region near 00 so
that they may be taken out of the integral. The integral is now

in a standard form and becomes

1(0 ,0) I(aL) I G(e-z 6) 22w (16)
kpIu' (010)I

with

u"(-0) -cos e cos (0-a0 ) + cos CO Cos U0  (17)

For simplicity, consider e - 60. Now u'4 (a 0 ) - 0 for -0

2a 0 . This gives the maximum of (16) corresponding to a grating

lobe. The position of the grating lobe is now given by (14),

which becomes

00 -rsin 7- = r cos e (18)

r - 0 gives the main beam at 00 0 0, while positive and negative
r give grating lobes at positive and negative 00 angles under the
condition

r 1 O < 1 (19)28 Co's e0

However, (16) is not A valid representation of the integral

at u'(aO) - u"(aO) - 0, for (15) must be replaced by:

u(0) = u(a 0 ) + -3 (%-I) 3 u"ac0 )

Now evaluating the integral thus obtained at 4- 2et0

11
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1 l(c*e ) 6 r r(1/3) exp jkpu()]I orfI Ir(9oe.)I= k(ý G (ie k rp (20)

Equation (20) is subject to the restrictions that I (a) and
G(O-a,e) are slowly varying, kp is large, and ao is not near 0

but is inside the range -a(P) to + c(P). To compute the grating
lobe height compared with the main beam height, compare the
grating lobe computed from (20) with the main beam computed from

-a(p)

Figure 4 shows the grating lobe height relative to the beam
as a function of spacing (s cos e.) for various cosn amplitude
tapers, with p - 26X and G(ý-a,e0) - cos (4-a). a(P) - was used
to assure that 0<a 0<a(P). For comparison, actual patterns were
computed from (10 and the grating lobe heights are shown. The
maximum difference between the actual grating lobe and that com-
puted from (20) is 2 dB. Since the approximation from (20) repre-
sents the worst case, it appears to be a useful guide for control-
ling the grating lobe as a function of spacing, current distribu-
tion, element pattern, radius, and arc length. The position of
the grating lobe (for r - -1 and e 0) predicted by (18) is
shown in Figure 5 in comparison with the actual position, with
gzood agreement.
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Figure 4. Grating lobe height versus spacing for various con'

amplitude tapers; comparison of approximate stationary phase oval-

uation with exact computation.
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Figure 5. Position of grating lobe for stationary phase

approximation and exact computation. The exact location is
nearly independent of amplitude taper (to 1 degree), so the
average is represented.
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1.1.4 Equivalence Between Continuous and Array Distributions

The basic equivalence between discrete and continuous dis-
tributions on a planar surface was described by Ksienski (1961).
Using the same size aperture, a good approximation may be given
by the pattern proch..ced by the discrete (array) distribution to

the continuous distribution patterns provided the element spacing
is suitably small. In general, element spacing is controlled by
grating lobes and by the pattern in invisible space, which affects
the aperture Q. In some shaped beam cases, the optimum element
spacing may be below X/2. Most pencil beam patterns are satis-
factorily realized by keeping all grating lobes well away from
visible space. For all small arrays and for shaped beam patterns,
the discrete approximation may not be adequate, especially for some
element patterns. Thus it may be necessary to numerically adjust
the distribution, which is best done by adjusting the zeroes of
the array polynomial. The array zeroes can be made the same as
those of the continuous distribution pattern (Elliott, 1977). A
better way used by Winter (1977) numarically adjusts the discrete
distribution to optimize the pattern. All these results have been
developed for linear/planar distributions. For conformal sur-
faces, it can be expected that the results generally apply.
Related material will be found in Chapter 2.
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1.2 The CylindricalArray

The cylindrical array can be considered to consist of a

stack of identical ring arrays. Denote the complex excitation

of the p element in the q ring by Ip I(a z ), where ath pq p

is the angular location of the p and z is the z-axis location

of the q ring. The coordinate system 2s shown in Figure 7.
The beam is assumed to be pointed in the * - 0 direction in azi-

muth, corresponding to the a - 0 reference point of the element

location. The beam is stepped around the cylinder by redefining

the a - 0 reference to the desired position.

All elements are assumed identical, symmetrical, equally

spaced, and pointed along the radius vector. Thus, the azimuth
element pattern can be expressed as a function of jo - a . In

general, the azimuth pattern depends on the elevation angle 0.

The complex element pattern is denoted by G(O-a,c), with the phase

referenced to the center of the ring in which it lies. Thus, if
it is assumed that the phase center is at the element,*

G(*-a.e) - I G(*-aO) exprjk p cos e cos($-a)] (22)

The far field is

E(•,e) I q G(*-apz,) exp[jqu] (23)p q p 23

where
u = kd sin e

d - spacing between elements in vertical direction

k- 2wr/X

*This is not strictly true for an element on a ground plane, but

the deviation is significant only where the amplitude is small -

that is, past 900 - so the assumption has negligible effect on

computed results.

17
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A beam can be formed in the direction * 0, 0 - 00 by
exciting all elements to add in phase in that direction (beam
cophasal excitation). Thus, in view of (22) and (23):

Ipq I pq exp C-jk p cos 00 Cos a - JqUo] (24)

where u° - kd sin 6o.

z
I z

I I°

I -

E((P, 0)

I-IVI .- - - - _,-o

X,

Figure 7. Coordinate system.

18



_ • .- • M

In (24)the phase terms are separated in a and Zq, where
Zq - qd. This allows assuming a current distribution of the
form

'(Qp,zq) 63~a Cp) I (e) (z) ( pa) q(a) (2 5a

with

Ip(a) - 1p(a)[exp - jkpcose cos p(25b)

and q (e) q (e) exp [-jquo] (25c)

The superscripts (a) and (e) indicate azimuth and elevation dis-

tributions, respectively. Note that the azimuth distribution
depends on the beam-pointing angle in both azimuth and eleva-
tion, whereas Iq(e) depends only on e0. Writing the current dis-
tribution in the form (25a)allows the pattern (23) to be written

in the form

E(•,) - E(a) (O,e) E~e) (0) (26a)

where

(~a) (,)- (a)G(- ,)p(Ol) p C(O-ap0e) (26b)

and e
E(e) (8) 4 )exp [jqu Iq (260)

S~(a)
EiaE (0,0) is just the pattern of a single ring excited by

1(a) Ee) (8) is the space factor of a single vertical column

of elements excited by I (e).
q
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Thus, the analysis can be simplified by assuming the
separable aperture distribution and considering the cylindrical-
array pattern to be the product of a ring array pattern and a
linear array pattern. A pencil beam can be formed by select-
ig p(a) to form a beam at -0 in the azimuth cone 0 -
and by selecting q (e) to form a beam at 0 in the elevation
plane * - 0. Since the pencil beam is the product of two fan
beams, the principal sidelobes will lie on the cone and plane in
which the fan beams were shaped.

The patterns do not include the effects of mutual coupling.
Active element patterns, which do, and the corresponding element
efficiencies have been calculated by Schwartzman and Kahn (1964)
and by Kahn (1971).

1.2.1 Grating Lobes and Patterns

A cylinder can be covered with a regular lattice but the
projection in any direction produces unequal spacing in azimuth.
In elevation however the projected element spacings are uniform,
so that cornventional grating lobe theory can be used for eleva-
tion. There are no sharply defined, high amplitude grating
lobes due to azimuth spacing, but the sidelobes of a low side-
lobe design may be raised if the ilement spacing is too large.
Since the cylinder must have elements "all around" to allow 360
deg azimuth scannirg, there are two variables involved in grating
lobe type calculations; element spacing and cylinder radius. In
addition each element pattern usually has its axis in a radial
direction so that the element pattern cannot be factored out.
Amplitude tapering is typically used to produce moderately low
siWelobes, so that any meaningful pattern calculation must

include element spacing, cylinder radius, element pattern, and
amplitude taper. For this reason there are no simple grating lobe
type xesults for the cylindrical array. Cylindrical arrays that

are phased to produce narrow beams tend to be more susceptible

20



to grating lobe problems than do comparable planar arrays be-
cause of two factors: (1) On the sides of the active portion of
the array the element patterns do not point in the direction of
the beam; and (2) in this same region it is necessary to intro-
duce a large interelement phase shift into the excitation to
compensate for the curvature of the cylinder. The latter factor
is equivalent to scanning the side portion of the array to some
angle off the normal to the cylinder at that point; hence, the
interelement spacing must be kept correspondingly small to
prevent the formation of grating lobes.

Elevation scan to e0 is achieved by adding the phase -qkd

sin 00 to the qth ring. The performance of the array pattern in
the plane * - 0 is now the same as for a linear array with ring
array "elements" with patterns such as those in Figure 2. In
particular', a grating lobe appears at 8 when

d' (sin 0 -sin o- +m m- 1,2,... (27)

The lobe is at * = 0 in azimuth because E(a) (0,e) has its maxi-

mum at * - 0 (or nearly so) for all 0. The grating lobe as it
arises from E(e) (e) has unit magnitude (equal to main beam),
but is reduced by E(a) .- Oe).

Staggering alternate columns of elements on the cylinder
is an effective means of extending the elevation scanning angle
for a given ring-to-ring spacing d and maintaining a small grat-
ing lobe. Consider the staggered array as a superposition of
two regular arrays, each with the normal number of rings Q but
only half the number of elements in each ring .. The subarrays

are identical except one is rotated by half a spacing in azimuth
and is raised by half a spacing in the vertical direction. with
the phase compensating for the dislocation. The ring-array
patterns for the subarrays can be written (see Appendix A):
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Array I - The beam in the direction of the first element; that
is, f - 0.

EI- f(e)I I n(eO) F%(e) cos n*+f(6) 1 in (°) FM (0)
n n n

cos -n) *+ f (e) ; In(e 0 ) FM- cos -n) (8

The r - 2 term, which ordinarily would not contribute (for s<X)

is included, because the spacing is now double the normal spacing.

Array II - The beam is in a direction halfway between two ele-
ments; that is, f 0.5.

Xfo) Fn(e) cos no-f(e) I In(0°(Eli - f(e) I FIn('e FM ()

n n n

Ceos MF n +f () cos (M -n)* 29
n

If the array were not staggered, each ring would have M elements
and a pattern

E(a) 01 e) - f (6) n ( In 0 ) Fn (a) coson +f(e) I I n (00) FM-n e
n n

0 cos (M - n) (30)

The grating-lobe term that arises because of the doubling of the
spacing is

Eg ,,) - In FM co( - (1)in 7 - n (1

22
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dd

tiplied by exp [jk d (sin e - sin 6 )] to account for the phase.
The patterns of cylindrical Arrays I and II are then

Q
EI(,e)- q jI exp [ jqkd(sin e sin 00) 1

CE~a) (016) + Egjt (0,B)J

and

EII(0,8) -exp djy(i - i~) exp

Ljqkd (sin F, sine0 )) CE(S ~e Egk (010)] (32)

The sum of El and ElI is the pattern of the staggered array. It

may be put in the form
r 2Q

E (0,e) - I~ exp Cjqkd (sin e-sine0 ) E~)(06

q- 1

+ I exp Ejqkd (sin e-8e) .c(lexp CJk d (sin e-sineoJj

qml

E* (01) (33)

The first term of (33) is the pattern of an array of 2Q
rings spaced at half the normal spacing with M elements on each

ring; that is. the staggered array with the "holes" filled in.
This term should give no grating lobe because of the half spac-
ing in elevation and the normal spacing in azimuth.

The second term accounts for the grating lobe. The factor

23



Q
* I'q &xp Cjqkd (sin e-sineo))

is the linear array pattern for normal elevation spacing, and

gives a grating lobe when

d
V (sin e-sineo) - +1 (34)

This gives

1 -exp Ljk (sin e-sineo) ] 2

Thus, the grating lobe of the cylindrical staggered array
is equal to the grating lobe of the linear array, with spacing

d, times the grating lobe of a ring array, with spacing 2s. The
elevation and azimuth positions of the product lobe are the

positions of the linear and ring array lobes, respectively.
The staggered-array lobe appears at the same elevation angle as
the lobe of the regular array but is removed from* -0 to -
Ogj as determined from a ring array with every other element

removed. The advantage gained is the amount the grating lobe of
the ring subarrays is down from the main beam.

Figure 6 shows the grating lobe height as a function of

scan angle for regular and staggered configurations, and the

position in elevation and azimuth for the staggered array lobe.
The parameters are No - 128, eo - 00 and a-50dB Chebyshev

distribution.

In obtaining (33) eauption (9) was the start. However,
the start could equally well have been (13) , using a - 2 (p + f).

Also, it was assumed that f - 0 for Array I and f - 0.5A for

Array 11, (33) depends only on the fact that E.1 (0,e) for

24
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Array I is equal to -Egt (0,O)for Array II, which is true for
any orientation of the first element with respect to the main
beam. Thus, (33) is valid for cylindrical arc arrays in
general. Furthermore, E., (*,O) may easily be identified from
patterns computed directly from (10) with alternate elements
excited.

Figure 8 shows E(a)(ý,8) + Eg£ (*,e) and for comparison
E(a)(,,O) for various e0. These patterns are computed from (10)
and the contribution from Eg, (,e,) is easily identified. The
effect of staggering is easily seen. For example, if the rings
are spaced at d - 0.72X, a beam at 00 M 300 gives a grating lobe
at about -60°. From Figure 8C a regular array gives the
grating lobe height at -11 dB, which is the difference between
the beams at e "- 300 and e - 600. For a staggered array, the
grating lobe height is the difference between the beam at e -
300 and the grating lobe at 6 - 600, or about -28 dB.

1.2.2 Principal Sidelobes

For the regular array the principal sidelobes will lie on
the plane 0 - 0 and the cone 6 - 60, because the regular-array
pattern, for the separable distribution, can be thought of as
the product of two fan beams.

For the staggered array we can consider equation (33).
The first term is the product of a linear array fan beam and a

ring array fan beam, giving principal sidelobes as a regular
array on the plane 0-0 and the cone -m80. The second term

* gives another set of axes, however. The first two factors of
the second term give the linear array grating lobe (without the
main beam); the third factor gives the ring array grating lobe
(with double spacing). Thus, another set of principal sidelobes
lies on the cone 0 - gg and the warped plane 0 - 0gj (0)

where Okz is given by (34) and *Og '(0) gives a maximum to
1gt (010).
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For the regular array, then, the full cylindrical array
pattern is well represented by two contours through 0,0 space,
(c,e0) and (0M). For the staggered array, the full pattern is
well represented by the four contours (%,e), (0,0), (*,og,)
and (0gi (0), 8). Figure 9 presents the patterns for regular
and staggered arrays at variois e60. The same single ring para-
meters are assumed as for Figure 8; in addition, 32 rings spaced
at 0.72X are used with a 30-dB Chebyshev distribution for I q(e).
The contour (0g, (M), 8) was determined from the patterns of
Figure 8 by interpolation between the maximum points on the
grating lobe.

The grating lobe can be reduced and elevation scan extended
by reducing tho azimuth and/or elevation spacing of the staggered
array. For example, reducing the azimuth spacing from 0.65A to
0.5A (with d - 0.72A) increases the scan-angle limit from 300 to
about 400 to maintain a grating lobe of 30 dB, and further reduc-
tion to 0.4A allows scanning to above 75 with the grating lobe
below 40 dB. Reduction of elevation spacing (with s - 0.65X) from
0.72 to 0.6A allows scanning to above 500 for a grating lobe

below 40 dB. In the array being implemented, however, the eleva-
tion spacing is restricted to a minimum of 0.72A because of the

element size.

1.2.3 Cylindrical Depolarization

The cylindrical surface like any curved surface depolarizes
an incident wave. For example, if a linearly polarized wave is
incident in the plane of incidence (the plane containing the
cylinder axis and the direction of incidence), polarizations
that are parallel or normal to this plane behave differently.
With electric field parallel to the plane of incidence, the
axial component of field on the cylindrical surface is in the
same direction but the circumferential components oppose. Of
course, at normal incidence the latter are zero. For normal
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polarization, the axial components are in the same direction;

and the circumferential components are also in the same circum-

ferential direction. Thus incident circular polarization pro-
duces fields that have the polarization axes oriented right on

one side, and left on the other side, with all polarizations
elliptical except at points of incidence. Thus a cylindrical

array should use elements that radiate both axial and circum-

ferential components. Further, the ratio of these components in
general for any given element will change as the angle of inci-
dence changes. Arrays on large (in wavelengths) cylinders with

tapered circumferential distributions will experience a lower
and perhaps negligible level of depolarization as the amplitude

at elements significantly away from a projected aperture plane
may be small. Conical arrays do not share this advantage unless

only the large diameter portion of the surface is utilized. The
general conical case will be discussed later.

1.2.4 Comparison of Planar and Cylindrical Arrays

The question often arises whether the cylindrical array

makes efficient use of aperture and hardware -- in particular,
when compared with the standard planar-array approach. For 360-
degree azimuth coverage, four planar arrays, each scanning +45

degrees, are generally used, so the cylinder is compared with the
four-sided planar configuration. Identical elements are assumed.

For elevation scanning and elevation pattern, the two configur-

ations give nearly identical results, assuming that both use a
separable cophasal distribution and identical distributions in

elevation. The planar array elevation pattern is the array

factor multiplied by the elevation element pattern, while the
cylindrical array elevation pattern is the array factor multi-
plied by the "ring array element" elevation pattern. Figure 3,

for example, shows the "ring array element" elevation patterns
compared with the element elevation pattern. If anythirng, it is
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an advantage of the cylinder that the ring array elevation
patterns tend to suppress sidelobes more than does the element
pattern alone.

The comparison, then, can be reduced to a comparison of the
ring array azimuth pattern to the linear array azimuth pattern.

Assume that no more than 1800 of the arc will be excited on
the ring. Then the amplitude excitation of a linear array can
be projected* onto an arc whose chord is equal to the length of
the linear array, with the phase oZ the elements on the arc
corrected to give a linear phase front. For small angles off
broadside -- that is, the main beam and first few sidelobes, the

arc can be expected to give about the same results as the linear
array, because for small angles the curvature has a negligible
effect on the phased contribution from each element. Also,
effects of element spacing become apparent only at larger angles.
By this reasoning, the projection of, say, a Chebyshev distribu-
tion is a convenient means for forming the desired beamwidth and
constraining the inner sidelobes of an arc array. Computations
bear this out. Furthermore, the farther-out sidelobes tend
naturally to be lower, with the exception of the grating lobe.
Computations indicate that if the grating lobe is controlled, all
sidelobes will be below the inner sidelobes.

The relative performance of the linear and arc arrays can
be evaluated in terns of the number of elements and the overall

antenna size required. Consider Figure 10. The active aperturesi
are shown in dark lines, and are of the same projected length.

*The increased %lement density as a function of a on the arc

means the amplitude should be reduced by I/coo a; however, this
is exactly compensated by the assumed cosine element pattern.

-- 40



The element spacing on the linear array can be fixed at d - 0.586X,
which is the spacing required to scan to +.45 with the grating
lobe just coming in at +900. For the arc, the grating lobe can
be controlled by placing the stationary poiat outside the active

arc, say at 0o - (P) + 6. Then from (18) with e0 -0 and
r- -1, since 6 is small

s = 1/2 sin (a(P) + 6) I/Csin a(P) + 6 cos a(p)J (35)

2p SIN a(P)

|P i

Figure 10. Four-sided linear array compared to equivalent

circular array.

The total number of elements on the four-sided array is

about

8 p sin a(P)/0.586X

The total number on the ring is

22wp/s - 4wp(sin a(P) + 6 cos at(P))

* IThe ratio is
number of ring elements- 0.920 (I + 6 cot a(P)) (306)
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From this one may conclude that about 92 to 100 percent of the

elements required for a four-sided linear array are required to
obtain the equivalent ring array. Table 1 and Figure 11 show
results and patterns for a 40-element linear array with uniform
and Chebyshev amplitude distributions, in comparison with arc

arrays of equivalent projected aperture. A cosine element pat-
tern is assumed for all cases. The directivity is that of the

azimuth patterns numerically integrated. It is not the actual
directivity, since elevation directivity is not considered, but

it is valid for comparison purposes.

TABLM 1. BEAMWIDTH, SIDELOBE LEVEL, AND DIRECTIVITY

Linear Array 900 Arc 1180 Arc
Distribution (fig. 11.1) (fig. 11.2) (fig. 11.3)

Uniform

beamwidth* 2.50 (3.040) 2.190 2.170
sidelobe** -43.3 dB -13.3 ,B -13.4 dB
gain 21.7 dB 21.3 dB 21.4 d3

Chebyshev (-20 dB)
beamwidtht.,, 2.220 (3.140) 2.280 2.280
sidelobe** -- 20.0 dB -20.0 dB -20.2 dB
gain -2"l.2TdB 20.7 dB 20.8 dB

Chebyshev (-26 dB) "

beamwidth* 2.470 (3.500) 2.520 2.52.
sidelobe** -26.0 dB -25.8 dB -25.2 dB
gain 21.3 dB 21.1 dB 21.1 dB

Chebyshev (-30 dB)
bearawidth* 2.621 (3.71u) 2.680 2.660
sidelobe** -30.0 dB -29.4 dB -28.6 dB

-28.8 dB g. F.
gain 21.2 dB 21.0 dB 21.0 dB

oThe beamwidth for the linear array scauned to 45° is shown inl parenthesev.
*WThe grating lobe is below the sidelobe level exrept where indicated (g F.).
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Figure 11.1. Forty-element linear-arra patterns for uniform (top),
-20-dB Chebyahev (middle), and -30-dE hebyshev (bottom) distribu-
tions. Broadside only, with spacing 0..59A~ and cosine element pattern.
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Figure 11.2. Ninety-degree arc-array analogous to the linear
array, with patterns for analogous distributions.
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Figure 11.3. One-hundred-eighteen-degree arc array analogous to
the linear array, with patterns for analogous distributions.
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Figure 11.1 shows 40-element linear-array patterns for uni-

form, and -26- and -30-dB-sidelobe Chebyshev patterns with the

cosine element pattern. Figures 11.2 and 11.3 show arc arrays

corresponding to the linear array of Figure 11.1, with patterns
for the various distributions. Size and number of elements are

shown.

The results in Figure 11 indicate that the circular array

of size and number of elements equivalent to a four-sided linear

array can be made approximately equivalent in broadside perfor-
mance. Since the linear array beam broadens for scan off

broadside, however, the overall performance of the ring array is

superior.

In addition, there are some disadvantages of the planar

array which the cylindrical array inherently avoids. The ring
array beam is identical for all beam positions, while the planar

array beam is broader in scanning off broadside. As Ll.e ring

array beam is scanned by, in effect, commuting the distribution,
it is always formed by a distribution which is symmetrical in

phase and amplitude. This results in superior beam pointing

accuracy independent of frequency change. Finally, the cylindri-
cal array gives 3600 coverage in azimuth with none of the hand-

over problems associated with the use of several planar arrays.
In some applications these advantages can be very important.

The cylindrical array, however, has some disadvantages.

For scanning, the amplitude as well as the phase must be switched

in azimuth, and a feeding systems results that may be more com-
plex than that of a planar array system. (However, computer

control is not a problem in view of the separable aperture.)
The greatest disadvantage would appear to be that the cylindrical

array cannot be physically separated as can the four planar

arrays. This means that the cylinder must be in a position to
look 3600, while each planar array need see only a 900 sector.
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More important, it means that the cylinder cannot be tilted back
to increase the elevation coverage, as is common practice with
planar arrays. For this reason, a truncated cone might be con-
sidered to extend the elevation coverage and still retain the
advantages of circular symmetry.
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1.3 The Conical Array

In the design of electronically scanned conical arrays, prob-

lems arise that are different than those for arrays on planar

surfaces. The gain of conical arrays changes as a function of

the scan angle, and also depends on the part of the radiating

structure that is visible from the far field at the beam pointing

position. The polarization in the far field changes as a func-

tion of scan angle for radiating elements whose polarization is

fixed with respect to the surface of the cone. Sum and difference

patterns become sensitive to the incident polarization. The man-

ner in which these quantities vary with scan angle will be dis-

cussed. The problem of pattern synthesis and analysis is also

examined, and several techniques are discussed. In addition, the

control circuitry and phase shifters required for these arrays

are described. The general configuration for conical arrays con-

sists of a set of radiating elements placed on a conical surface.

The far-field patterns to be radiated from this array are pencil

beams with suitably controlled sidelobes. Difference patterns are

generated to improve tracking accuracy. The pencil beam is

summed from a direction perpendicular to the generatrices through

the axis of the cone. The radiating elements comprising the con-

ical array are assumed to have symmetry in the plane perpendicular

to the axis of the cone, the * plane. The array-placed on the
conical surface is assumed to have symmetry in the * plane. What-

ever the shape of the active part of the array, the projected

aperture of the active part will be a function of the position

angle defining the beam pointing direction in the plane defined

by the axis of the cone and a generatrix, (the 0 plane). The
active part is defined as that part that i3 turned O0 to receive
(or transmit) energy. The projected aperture will be constant
for any * scan at constant 0 because of the symmetry mentioned

above. Assume for the moment that the conical surface will be
uscd in& its entirety, that is, the active part of the array will
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go from the tip to a cone diameter of, say, 10 inches. To estab-
lish the theoretical upper limit of performance, further assume
that the area is used perfectly in the electromagnetic sense.

The projected area of the active part of the area will be directly
proportional to the achievable gain. For purposes of comparison,
normalize this area to that of a planar aperture of a diameter of
10 inches. Thus the conformal array is compared with a mechani-
cally scanned parabola or planar array located at the maximum
diameter of the conformal array.

The graph in Figure 12 is shown for a cone angle of 20
degrees. Except for the first 12 degrees of a scan (from 0 to 12
degrees) the conformal array has a larger area gain. This fact
may be used as follows.

(a) Assume that the same Rain is wanted for all 0
scans. The active part of the conformal array will
then have a constant projected area. This could, for
instance, reduce the prime power required for scan
directions other than on-axis.

(b) The minimum gain of the conformal array can be decreased

for the on-axis direction and increased for other direc-
tions as compared with that of the mechanically scanned
antenna.

The beamwidth of a planar array changes as a function of the
beam pointing in direct proportion to the projected aperture per-
pendicular to the beam pointing direction. This relation is an
approximation but is quite accurate for angles between broadside
and 50 to 60 degrees. In a conformal array the beamwidth Is not
so easily related to the geometry of the array because both the
shape of the active part of the array and its projected area
change as a function of the beam pointing direction. An estimate
of the beam and sidelobe shapes will be given below.
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Figure 12. Normalized area gain of conformal array as a function

of scan angle.
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Figure 13. Layout of ring array with six rings. ?
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For the beam pointed perpendicular to the generatrix of the
cone, the radiation characteristics may be approximated using an

equivalent planar array whose area is the projected area of the
active part of the conformal array. Thus one would expect beam-
widths commensurate with the projected aperture dimensions shown

in Figure 12 and near-in sidelobes below 15 dB.

At the other extreme, a beam pointed along the axis of the
cone, a different condition exists. For small angles near the
cone axis, the array when projected forward would look approxi-
mately like a concentric ring array. The center ringe of the

array are missing, since the extreme tip of the cone is probably
not usable in practice. For a 6 ring by 24 element/ring array as
shown in Figure 13, the pattern would be somewhat as shown in
?igure 14. For comparison, Figure 14 also O.ows the pattern of

an array of the sama size on the same cone but with the center
rings filled. The latter Is the usual pattern for a uniform cir-
cular array. It will be noted that tho ring array has a narrower
beamwidth and higher side7.obes than the filled array. This nar-

rower beamwidth can be explained with reference to an interfero-
meter which has a beamwidth one-half of that of a completely filled
linear array of the same length. The "sidelobes" are as high as
the main beam. This particular case is an intermediate one. Thus
It can ba seen that there is a trade-off between array filling,
beamwidth, and sidelobe level.

1.3.1 Lattices on a Cone

be In a conical (and also a cylindrical) array, advantage can
be taken of the circular symmetry of the surface to reduce the
steering problem essentially to that of scanning in one dimen-

sion only. Figure 15 shows an end-on view of ;he cone with the
shaded portion representing the excited area of the surface. If
the beam lies in the plane perpendicular to the cone axis, its

position will be as shown in the figure - and symmetrical with
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Figure 14. Patterns of circular apertures.

Figure 15. Excited portion of cone for beam pointing to*.
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respect to the active area of zhe array. If the beam is scanned
toward endfire while 0 is held fixed, it can be seen that the
projection of the beam onto the plane of the paper will still fall
at 01. Hence the active area is still symmetrically located with
respect to the beam. The beam can be thought of as 1,eing broad-
side to the cone in the 0 plane and capable of being electronically
scanned in the plane that passes through the cone axis (the 0
plane).

If the beam is now steered around in the 0 plane to 02'
ideally the active portion of the array will follow it to main-
tain a symmetrical relationship with the new beam pointing direc-
tion as shown in Figure 16. Here also, the beam can be electron-
ically steered toward endfire without changing the angle 02 or

disturbing the symmetry conditions. Hence, it may be concluded
that for any angle of *, in the ideal case of a continuously illum-
inated aperture, the beam can be considered to be broadside to the
cone in the $ plane and need be electronically scanned only in the
0 plane.

With a discrete number of elements on the cone, the ideal
situation outlined above can only be approximated. However, if a
reasonably large number of elements is used, che approximation
will be quite close. For example, if 16 elements are used in the
larger rings around the cone, the largest portion of the area of
excitation can be switched in 22-1/2-degree steps. Thus, it is
necessary to electronically scan the beam only +11-1/4-degrees
off the perpendicular to the excited area to achieve full cover-

age around the axis of the cone by a sequence of switching and
phasing operations. Since any one active area of the cone scans
only +11-1/4-degrees in the 0 plane, the interelement spacing in
that plane need be only slightly less than the apacing required
for an array that does not scan at all in that. plane, Hence, the
interelement spacing problem is reduced approximately to tnat
associated with scanning in the 0 plane only. It may also be
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attractive to provide amplitude and phase control at each element
instead of switching.

The conical array can be thought of as a set of cylindrical
arrays of different radii as a first-order approximation. Hence,
it is to be expected that it, too, will have a tendency to have
grating lobes in the 0 plane. Therefore, it is anticipated that
the interelement spacing in that plane will have to be kept smaller
than would normally be necessary for an equivalent planar ariay.
However, the fact that each circle of elements on the cone nearer
the tip is smaller than the previous ono may tend to alleviate
this problem by introducing a modest amount of quasi-randomness
into the element placement.

A more nearly continuous illumination in both principal axes
of the cone can be achieved by staggering the elements in alter-
nate circles as shown in Figure 17. Thus, although the actual
spacing between any two elements on a circle with an 8-inch dta-
meter is 1.2X0 (assuming 16 elements per circle), the effective
spacing is only one-half that value. An interelement spacing of
O.6)O is rather large for a circular array; however, each circle
nearer the tip of the cone will bring the elements closer together
until the point of physical interference is reached. The average
interelement spacing in the 0 plane for the section of the cone
that has 16 elements per ring should thus be less than 0.5X0.

In the smaller regions of the cone, fewer elements will be
needed per circle. The type of element to be used will influence
the decision on just how many should be used in each circle. The
crossed waveguide elements (Kummer, 1972) can be fitted together
quite closely on a flat surface provided that they are rotated at
an angle of approximately 20 to 25 degrees, depending on wall
thickness, to the principal axes of the lattice (see Figure 18).
They can be brought most closely together on a curved surface if
they still maintain that angle. When the elements in alternate
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Figure 16. Excited portion of cone for beam pointing to

Figure 17, Effect of staggering elements in alternate circles

On cone.
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circles are staggered in a symmetrical fashion, the lattice is

rotated 45 degrees as shown in Figure 19.

The unusual geometry of the cone requires special consider-
ation of the coordinate system used to represent the patterns. It
has been found that in some coordinate systems it is impossible to

properly define the two principal planes of the beam when they are

scanned to the nose-fire position. (Howard et al, 1969). Hence,
a special coordinate system was devised that follows the peak of
the beam as it is scanned. (Howard, 1969). The major requirement

for the new coordinate system is that two fixed planes of the new
system intersect the main beam of the antenna pattern at right
angles. This requirement is satisfied by a variable spherical
coordinate system, with angular coordinates 0' and 8'. The sys-

tem is positioned so that 0' - 0, 8' = 90 degrees corresponds to
the main beam pointing direction - 1i, e8 81. This variable

coordinate system can be related to the fixed conventional coor-
dinate system through the transformations presented in Villeneuve

(1968). In this reference,

cos e - cos 8' sin 81 + sin e' cos 0' cos 81

sin e =/sin2 e' sin2 0' + (sin 8' cos *' sin 01 + cos e' cos

sin * - sin 8' sin *'/sin e

cos $- (sin e' cos 0' sin 81 - cos 8' cos Ol)/sin 8

The transformations have little effect on the pattern repre-

sentations for broadside beam pointing directions ( nhear 90
degrees), but have considerable effect for endfire beam pointing
directions (81 near 0 degree).
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Figure 18. Tilted lattice for Figure 19. Crossed-waveguide
closest packing arrangement of elements tilted at angle of
crossed-waveguide elements. -20 degrees in staggered

arrangement to obtain closest
packing.
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I
Another transformation is necessary to preserve the polari-

zation of the test point used to perform the pattern plots. The

test point polarization must be fixed in the Cartesian frame of

the physical antenna cone. Again using Villeneuve (1968), the
new polarizations are related to the old polarizations through

10 sCo ' (c4) Co os 0 F in 0 s in 0 sin 4) cos 0
sin ' [i1 UO i s o

1 sin cs cos6 +I(Cos Cos Cos O + sin 6 sin )]
sill ' [G 1 -~1 1i

For convenience, the new coordinates were renormalized as * -

and 6 - 6' - 90 degrees, so that the main beam peak is always

centered at -= 0 degree, 0 = 0 degree.

Using these modifications to the coordinate system, a com-
puter program was written and a series of patterns calculated for

a crossed-slot configuration that partially filled a cone. The
slot arrangement consisted of six rings of crossed slots with 24
slots per ring. The two arms of each crossed slot were fed in
such amplitude and phase that linear polarization of the proper
orientation resulted at the peak of the beam. The large end only
of the cone was filled with elements, and the ring nearest the tip
was 10 wavelengths from it. Total length of the cone was 12.2X
and the base had a diameter of 4.4X The elements thus extended
only about 20 percent of the way from the base of the cone to its
tip, and the computer patterns only present a rough indication of
those of a completely covered cone.

In the calculations each element was weighted by the gain
that it has in the direction of the peak of the beam. It was
determined that this weighting yields the highest signal-to-noise

ratio when the array is operating in the receiving mode (Kummer
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et al, 1969). Figure 20 presents a serieq of patterns computed

for a beam steered 20 degrees off the nose-fire position (01 = 20
degrees). These patterns represent only the desired component of

polarization. There is a sizable cross-polarized component at

some angles. The assymmetry of the conical geometry impedes a

straightforward presentation of the antenna patterns, as evidenced
by the complexity of the set of pattern plots presented in Figure

20. A complete description of the antenna requires three-dimen-

sional models for clarity. In an attempt to remedy the inherent

,confusion, the sum and difference patterns are presented in
isometric views in Figure 21. The computer program used for the
previous pattern computations was then modified so that it would

handle elements arranged in a staggered configt.ration similar to
that shown in Figure 17. Sixteen elements per ring were assumed

for the initial computation. With that number of elements in
each ring, it was estimated that 10 rings would fit on the cone.

"Thus, a totel of 160 elements "filled" the large end of the cone.

The small end of the cone was then left "empty." The diameter of

the base of the cone was 6.2 inches and its total length was 17.5
inches. The frequency was assumed to be 9.0 GHz and the spacing
between rings to be 0.45X to prevent grating lobes. The 10 rings

of elements thus covered the lower 5.3 inches of the cone. In

the nose-fire direction the projected radius of the empty area
was over twice as large as the projected thickness of the annulusI of the filled area.

The broadside patterns of an array of this type would be

quite normal because the visible surface of the grray at any one
point is approximately rectangular. Furthar, the majority of the

slots are "seen" from favorable angles in regard to polarization.

In the nose-fire direction, however, a marked difference in
beamwidths for the two principal planes appears, as can be seen

in Figure 22. Three reasons were determined to explain this
difference:
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(a) The weighting applied to the elements tends to "turn
off" the elements that are being viewed from an

unfavorable angle. Slots in two areas of the annulus

are uxcited at a much reduced level. This different
excitation tends to create an interferometer effect in

one principal plane while the effective width of the use-

ful aperture in the other plane is reduced to consider-
ably less than the full diameter of the base.

(b) The geometry of the cone is such that when the slots are

oriented in a position to optimize the polarization of

the signal in the nose-fire position, they are no longer

optimum at any other angle. In the process of computing

a pattern it is necessary to fix the polarizations of

the slots so that there is no cross-polarized component

at the peak of the beam. At other angles, more or less
energy will go into this component depending on the

steepness of the cone and the direction of the cut for

the computed pattern. These two factors are related to

the rapid change in polarization angle in the radiated
pattern of a slot when viewed from a point close to
either null in that pattern. This rapid change in

polarization further aggravates the interferometer effect.

(c) The large empty area in the center of thr. "working"

annulus is in essence aperture blockage which contri-
butes also to the interferometer effect making it

somewhat worse than in either of the other cItuations

alone.

In a first step to alleviate the difference in beamwidths,
the weighting applied to the elements was removed. Instaad, each

element was assumed driven with equal power although its elenent

pattern was still taken into consideration when the far field
patterns were computed. The differential in beamwidths between the
Sand 0 cuts was much reduced by this action (see Figure 23).
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Fi.gure 22. Computed patterns for staggered element arrangement

similar to arrangement of Figure 18.
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Figure 23. Patterns of same slot arrangement used for Figure 22
but with amplitude weighting suppressed.

The second step was to modify the computer program so that
the remaining portion of the cone was filled with elements as

much as was thought practLcal in such a sharp cone. The cone was
made larger also to correspond to a physical cone with which
experimental work currently w:,s being done. The final arrangement
of elements was:
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Location Number of Elements per Number of
on Cone Rings Ring Elements

Base of cone 9 16 144
Center portion 12 8 96

Upper portion 8 4 32
Near tip 4 4 16
(Loaded elements)

Total 288
elements

The center portion of the cone was assumed to contain the

same crossed-waveguide elements as those near the base of the cone.

The upper portion contained a crossed-waveguide element similar

to the others but of a shorter length. The difference in leagth
made matching more difficult and tolerances had to be tighter,
but the short length was necessary to permit the location of as

many rings as possible in the narrow region of the cone. Near

the tip, the upper four rings had to use loaded elements to make
packaging feasible. Even with loaded elements, the first ring was
3 inches from the tip of the cone. The projected distance be-
tween two diametrically opposite elements in this first ring was

1.04 inch or 0.79X0, so that a small "hole" still remained in the
center of the aperture.

Computed patterns for this element arrangement with no
weighting show that the * and 0 beamwidths are somewhat closer

in value than in step (b), but that the largest improvement was
obtained by eliminating the element weighting. Figure 24 shows

the patterns for this final and best set of results for the nose-

fire case. The difference between ý and 6 is approximately 1.5
to 1, which should not be too large to be tolerated for most

applications.

It is not possible with crossed slots or crossed-waveguide
elements to eliminate the rapid change in polarization that appears
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under certain conditions. The only solution visualized so far is

the replacement of the crossed slots by crossed dipoles in cer-

tain areas of the cone. This solution is not a very attractive

one because it introduces particular problems of its own.

I-----

-10 -

"I Og, I IIIL

Figure 24. Patterns of cone fully covered with slots in

staggered arrangement and amplitude weighting

suppressed.
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1. 3,2 Coni-al Depolarization

A coae is less hospitable to an array in that its surface

cannot be covered with a regular lattice. The question of

orienting the radiators on the cone so that optimum performance

in all directions is obtained involves the geometry of the radi-

ator. The case of a beam pointing directly ahead is considered

first. Since the array is conformal, some sort of flush-mounted

radiator will be required. The slot and the open-ended wave-
guide are the two most commonly used flush-mounted radiators.

The polarization of these radiators are nearly identical; hence

the polarization of the slot radiator is considered.

The E-field in one quadrant of the far field of a slot is

shown in Figure 25. In this figure the ground plane is assumed

to be in the x-y plane. It can be seen that the polarization of

the field is everywhere perpendicular to the ground plane in the

immediate vicinity of that plane. If the slots are imagined to

be placed on a ten-degree half-angle cone, then in the forward

direction each slot will be viewed from an angle of ten degrees

above its nominal ground plane. The polarization at that angle

can be visualized by constructing a surface on Figure 25 that is

ten degrees above the x-y plane. This surface is shown in the

Figure by dashed lines.

It is instructive to start near the x-axis and note the

change in polarization angle as the ten-degree surface is fol-

lowed around to the y-axis. (The scale of angles in the x-y

plane is used for convenience.) At 0 degree the polarization

(shown by the dark arrows) is found to be parallel to the ground

plane and, hence, is termed horizontal. As the progression con-

tinues around the quadrant toward the y-axis, the polarization

vector at first turns quite rapidly downward, then turns increas-

ingly more slowly in the same direction, until at the y-axis, it

is vertical. At 45 degrees, the polarization is still very nearly

68

41



A

vertical instead of nearly 45 degrees as might be expected. The

result of this unequal rate of rotation of the polarization vector

is that, when the slots are placed on a cone, they musc rotate

at an uneven rate with their position around the cone ii order

for them to all have the same polarization directly ahead. It

can be shown that, in the quadrants, the slots must be oriented

so that their projections on the endfire view are also parallel

with the projections of the principal axis slots. This require-

ment is due to the fact that the far-field polarization of the

E-field of a slot is always perpendicular -o the projection of

the long dimension of the slot onto a plane perpendicular to the

line-of-sight.

To obtain a picture of how the slots oriented to favor end-

fire operation would look from other angles in space, a paper

cone was made with a number of slots drawn on it (Figure 26).

When the cone is viewed from end-fire, the projections of all

these slots are parallel as desired (see Figure 26a). When the

slots are viewed from a broadside position nearest the axial

slots, they are predominately lined up in an approximately axial

fashion (Figure 26b); hence, cross-polarization would not be too

much of a problem. However, when the slots are viewed from the

broadside region nearest the transverse slots, they are not

properly lined up at all (Figure 2 6c). With this slot arrange-

ment, large amounts of the available power would go into cross-

polarized lobes, and the effective aperture would be much smaller

than the projected area of the cone in this direction.

There are a number of ways in which radiators providing var-

iable polarization might be mounted on a cone, but complete

symmetry cannot be maintained with a minimum numbez of elements

or witl. simple control functions for beam formation and steering.

To illustrate some of the configurations that might be used,

several crossed-slot configurations were sketched on additional
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Figure 25. Polarization of fiolde radiated by slot at locus of
points ten degrees above ground plane.
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a. End-on V iew b. Side View c. View of side

with Axial opposite
predorninat- transverse

ing slots

Figure 26. Cone on which slots have been placed to favor and-
fire radiation.

cone models. Three views of each configuration are illu strated,

a nose-view and views from two opposite sides (Figures 27, 29,
and 29). In Figure 27 the elements are placed on the vertices

of a square grid laid out on the developed cone. The slots are

oriented circumferentially and along the cone generatrices.
With this arrangement, only the radial and circumferential exci-
tations required at any position must be determined.
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a. Nose View b. Side view c. Opposite
side view

Figure 27. Cone with elements on square grid and slots oriented
radially and circumferentially.

problem has the slots located on rings at fixed interelement

spacings about each ring and oriented along generatrices and
circumferentially (Figure 28). In this arrangement, only the
radial anid circumferential components of the excitation must be
computed as in the second arrangement, but in addition, the
computation of the phase function is also simplified.
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a. Nose view b. Side view c. Opposite
side view

Figure 28. Cone with elements on rings.

Figure 29 shows a fourth arrangement in which elements

are located on rings and, in addition, groups of rings are
placed along the cone generatrices. Each ring of a group con-

tains the same number of elements. When the spacing of elemente
in a ring exceeds a prescribed maximum value, an extra element
is added to that ring. This new number of elements is used in
succeeding rings until the element spacing again exceeds the
prescribed maximum value. At that point, again another element

is added. This arrangement results in a simpler control problem
than in the other configurations because the phase control

function for elements in any one group is simplified from that

of the elements in the other configurations.
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1. Nose view b. Side view c. Opposite

Figure 29. Cone with elements on rings and generatrices.

Other factors also influence the placement and orientation
of elements on the cone. Physical feeding arrangements, ease of
fabrication, and physical size, as well as requirements dictated
by pattern specifications, must be considered before a final
arrangement can be selected.
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1.3.3 Quantization Effects on Conical Array Performance

The conical array computer program that has been used pre-

viously to compute patterns from several slot configurations orn

cones has been modified to simulate the use of digital phase-
shifters and digital polarization-rotators.* In its original

form of the program, the polarization of each element was
rotated in such a way that no cross-polarized energy was radiated
by any element in the direction of the peak of the beam. This
condition, of course, can in general be met at only one point in

the far-field pattern, and cross-polarized energy will exist
elsewhere. Even satisfying the condition ct thi peak of the beam

in a practical antenna using crossed slot (or equivalent) ele'.ents

requires the use of a continuously adjusta'jle variable power
divider between the two orthogonal parts of each element.

The phase shifters, as well as the polarization rotators,

will be digital devices in conical array systems. Modifications

made in the program allow quantization at any number of bits
desired in either the phase shift or the polarization rotation.
With these modifications a series of patterns has been computed.
In most of the patterns computed to date 4-bit devices have been

assumed for each function; however, some of the results indicate
that 3-bits may be adequate for the phase shifter. In a comDosite

digital phase-shifter/polarization-rotator (Teeter & Bushore, 1951,

Vaillancourt, 1958) two 3-bit digital phase shifters in a parallel

arrangement produce both the effects of a 4-bit digital polariza-

tion-rotator and a 3-bit digital phase-shifter. The exact per-

formance characteristics of this device have not yet been simulated

in the computer program.

*See Appendix of Bargeliotes et al (1973) for a listing of the

program and an explanation of many of its parameters. See

Bargeliotes et al (1977) for a compilation of patterns.
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The element configuration used for computing this series of
patterns had a total of 432 crossed slots. Their phase centers -
were arranged in a staggered fashion similar to that shown in
Figure 30 with the exception that 48 generatrices were used
instead of 32 to bring the elements closer together in the circum-
ferential plane. The generatrices in the 432 element configura-
tion are spaced 7.5° apart in 4 starting at 3.750

It is apparent from Figure 30 that if the beam is pointed
in a direction in 4 that is coincident with one of the genera-
trices that the elements will tend to be symmetrically disposed
in relation to the beam pointing direction. Symmetry also tends
to hold if the beam is pointed half-way between two generatrices,

although not to such a high degree. Calculations to observe the
effects of polarization-rotation quantization showed that theset symmetries tended to mask the expected degradations in pattern

characteristics. In an effort to avoid the symmetries, and to
calculate the worse case, beam pointing directions in 0 were
chosen that differed from the angles of the gerneratrices by 1/4

of the angular separation between generatrices. Four such angles

were determined and used for computing a series of patterns.
The angles were 4 - 5.6250, 9.3750, 13.1250, and 16.8750, and

encompass a variety oZ asymmetries that should include the worst
case.

A scan angle of - 31.00 was chosen as being a typically
difficult beam pointing direction for the conical array. 60 was
held at this value for each of the four scan angles in 4 mentioned

above. For each beam point direction in 4 a series of 8 patterns
was computed. Four of these were 4 cuts (* - constant) for a 6
polarized array and produce difference patterns in the longi-
tudinal plane. Four of them were T - 900 for a 0 polai-ized array
and produce difference patterns in the circumferential plane.
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I
Of the four patterns for each cut, one was a reference pattern

with neither polarization-rotation nor phase quantized, one had
4-bit polarization-rotation quantization only, one had 4-bit

phase quantization only, and the last one had both 4-bit polar-

ization-rotation and 4-bit phase quantization.

The results of these patterns are summarized in Tables 2

through 5. In the tables four quantities are recorded for each

pattern, (1) the sum pattern nominal gain (the values given are
relative gains only and are not intended to give an accurate

estimate of array gain), (2) sum pattern ist sidelobe level (or

shoulder, in some cases), (3) sum pattern cross-polarized com-
ponent (this is the highest value attained anywhere throughout I
the pattern and is given in dB below the peak of the sum pattern),

(4) the difference pattern null depth (also in relation to the

peak of the sum pattern).

A survey of the results shows that quantization effects are

tot severe; not even in regard to degrading the null-depth of
the difference patterns as might be expected. The null depths

are consistently lower for the 0 cuts than for the T cuts for
reasons that are not clear. Computer round-off error as well as

the different principal polarizations of the two cuts may be

factors. The computer program needs to be further modified so
that it will compute difference patterns in both principal planes

for either 8 polarized or 0 polarized arrays.

The tables show that phase quantization at 4-bits has very

little effect on the patterns. It shows up mostly on the 1st

sidelobe level, and in the cross-polarized component. It appears

that 3-bLt phase shifters may be adequate for this array with its

relatively large number of elements, and the possibility should
be investigated.
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A complete set of patterns for the • = 9.3750 beam pointing

direction is given as being representative of the 4 sets. They

are presented in Figures 31 through 46. A study of these patterns
indicates that degradation due to quantization of the polariza-
tion-rotation and phase shift is not severe.
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1.4 A Conformal Array Pattern Code

A computer program has been developed (Hsiao and Rao, 1974,
1976) to calculate patterns of arrays located on singly or doubly
curved surfaces. In this code all elements are assumed to have
equal amplitude excitation although this restriction is easily

removed. Elements are assumed to be identical, i.e. the element
pattern is not affected by surface curvature. Each element pat-
tern is appropriately rotated so its axis is normal to the array
surface. The effects of a metallic surface, and mutual coupling
effects are not included herein; see Chapters 3-4-5. The utility
of this simple code is that it easily and quickly produces pat-
terns from curved arrays; actual array patterns will be less good
due to mutual coupling, metallic surface, and other effects. Code
results are then sort of a best case.

Figure 47 shows the coordinate system of a general conformal
array under consideration. The position of the nth element in the
array is given by a radius vector R from the reference point as

Rn (•C Yn' Zn)e (37)

and the element pattern is assumed known in a different primed
coordinate system and is given by En (o' n, ). The appropriate
expression for the far-field pattern of a conformal array can be

'written as N

F(e,) - , I nEn (o'f . )exp tjkR, • (R - RtO), (38)

n-1
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POINT LEEN

Figure 47. Coordinate system of the conformal
array.
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where

R - (in e cos *, sin e sin 0, cos e),

R0 - (sin 00 cos ý0' sin 00 sin 0'. cos 60),

I - the excitation coefficient of the nth element,

0,0- the spherical polar coordinates of the conformal
array,

0en , n - the primed spherical coordinates in which the far-
field, expression for the nth elemsnt is known,

and

0,0'0- the direction of the pattern maximum in the
unprimed coordinate system.

Equation (38) is expressed in mixed coordinates to conven-
iently represent the far-field pattern. However, to complete the
radiation pattern F(8,o) of a conformal array, it is first nec-
essary to transform the element patterns to a common coordinate
system (unprimed coordinate system) and then to express the element
pattern in terms of the unprimed coordinates 6 and *. This can be
done most conveniently using a coordinate transformation, as will
be discussed in the next section.

The element pattern is assumed known in a primed coordinate
system and has the general form

E(',*') -0 e, (8', ') o' + E*,(e',*')*', (39)

where E,, and EV are 0O and *' components. The radial component
is not included in Equation (39) because the interest here is in
the far-field radiation pattern. The subscript n is omitted in
Equation (39) for brevity.

It is also assumed, as noted earlier, that the element posi-
tion in the array is specified in rectangular coordinates with
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respect to a reference point on the conformal surface and that
each element orientation is specified by Euler angles ýx. Cy%

with respect to the unprimed rectangular coordinates x, y, and z.
Therefore, to transform the element pattern given in Equation (39)
from primed to unprimed coordinates, it is first necessary to

transform the pattern into primed rectangular coordinates and
finally to unprimed polar coordinates. These transformations can
be represented by the following matrix formulation:

ER~e,,) 0
I I (40)

E(e010) DRP D' PR (40)
E,(e,€) ,(eo)

where D'pR is the matrix which transforms the primed polar
coordinates to primed rectangular coordinates; the subscript PR
means polar to rectangular coordinates. The matrix I RN trans-
forms primed to unprined rectangular coordinates. The matrix

DRP transforms unprimed rectangular to polar coordinates; the
subscript RP represents rectangular to polar coordinates. The
form of these matrices is obtained next. It is well known that
the transformation from polar to rectangular coordinates can be
represented in matrix form as

E ER,

E = E0, , (41)

Ez, E

where the transformation matrix D'pR.•.is given as
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•,c •> h,• • ..... l .. " r r -•, • 7• -". 7 . . • • ,• • • •,

sin 0' cos ' cos e' cos *' -sin *'
-IDsin 0' sin c' COB 0' sin *' cos *' (42)

Cos 6' -sin 8' 0

This matrix i.s known to be real orthogonal. If ID'OI is
the inverse of ID'PRI , for an orthogonal matrix the following
relation is known to be true:

-1D,1) (43)

where D'pRIT is the transpose of IDpRI. Therefore the transfor-
mation matrix IDRPI in Equation (40) is given by the transpose of
the matrix given in Equation (42) with 0 and * replacing e' and
*D.

As mentioned before, the matrix I RMI is used to transform
a function from primed to unprimed rectangular coordinates. Since
the far-field element pattern is a function of angular variables
only, the coordinate transformation involves only the change in
element orientation. This can be obtained by three successive
rotations about the three coordinate axes. The first rotation is
for angle Fx about the x axis. The orthogonal matrix between the

primed and unprimed rectangular coordinate systems for this rota-

tion is

1.. 0 0

.0 sinx cos x

The second rotation is for an angle •yabout the y axis. The

orthogonal matrix for this rotation is a
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cost y 0 sin Y

co01s (45)

-s in 0 Cos
y

The third and final rotation is for an angle • about the z
axis. The orthogonal matrix for this rotation is

cosz -sin 0z z
A! sin t. cos &z (46)

0 0 1

In all three rotations the angle of rotation is positive when
the rotation is clockwise with respect to the axis of rotation.
The overall transformation matrix may be written as

RM A B I C . (47)

One should note here that the order of matrix multiplication is
not commutative; thus the sequence of these transformations is not
interchangeable. Equation (38) can now be rewritten in the matrix
form with the aid of Equation (40) as

0
F,, , W.' k\, n~p (t -- O)] 1Rp I I RM I I D'pitI Es, (0:•' (48)

E•.(O: P')

However, the right-hand side is still expressed in primed
cooidinate variables 0' and *'. These variables can be eliminated
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by considering the relations between the primed and unprimed

coordinate variables. The relations between rectangular coordin-
ate variables can be written as

ix
x x

i , (49)

Z Iz'I

and the relations between the rectangular and polar coordinate
variables are given by

x ! sin 0 cos

y - sin 6 sin 0 (50)

z i cos e

and

X x sin e' cos *'

y sin 8' sin 0' (51)

Zo cos e'

Substituting Equations (47), (50), and (51) in Equation (49), it
can be shown that

' cos- z'(6,0) (52)

-tan'4y(o €' = tan(53)

The ambiguity in the value of the arctangent function in
Equation (53) is resolved by applying the same set of rules that
one uses to determine the value of tan'4 (y/x). where x and y are
the rectangular coordinate variables.
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1.4.1 Description of the Co!muter Program

A computer program has been written in FORTRAN language which

computes and plots the far-field pattern of a conformal array for

a given set of-array parameters and is included as the Appendix B.
The program is divided into & main program and several subroutines
to allow flexibility. The name of the main program is Coflaray
(short name for conformal array). The array element orientations

(angles) and positions can be supplied as input data or can be
calculated using subroutine ELAGPO (short name for element angle
and position). Three separate ELAGPO subroutines were developed.
The first one is for a doubly curved surface with uniformly spaced
elements; the second one is for a doubly curved surface with pro-
jected uniformly spaced elements; the third one is for an array on

a conic surface. Therefore, depending on the conformal array
under consideration, the corresponding ELAGPO subroutine should
be used. It is also possible to write additional ELAGPO sub-

routines for any well-defined conformal array, and they can be

substituted for the ones written for this report. Except for this
ELAGPO subroutine, the other subroutines which should be included
with the Coflaray program, given in the order in which they are
called in the program, are:

CODTRF -This subroutine computes the elements of the R

matrix, as given by Equation (47) for each array

element.

DPRMAT -This subroutine computes the elements of the
matrices DIPR and DPR for each array element,

;i =.I", PR:

as given by Equation. (42) and k'43).

ANGTRF op This subroutine computes the relations between
Scprimed and unprimed coordinate variableoa, as

given by Equations (52) and (53).
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ELPAT This subroutine is used to select the array
element pattern as either that of a vertical dipole
or a horizontal dipole.

MATMUT - This subroutine performs the matrix multiplication
shown in Equation (40).

FRAME - This subroutine is used to establish the coordin-
ate-system frame to p1bt the radiation pattemns.

PENCHG - This subroutine is called in the FRAME subroutine
to change to a different pen in plotting.

REZERO - This subroutine is used to reset the origin if
more than one plot is desired in any given com-
puter run.

The program requires four data cards. The first data card
should contain six variables in an integer format of 615. These
variables are:

NE - Number of elements in the array. If the subroutine
ELAGPO is to be used, NE should be less than or
equal to zero.

NC - Number of antenna pattern cuts required in * plane.

NP - Number of points at which the antenna pattern is
calculated and plotted.

LLL - Controls the amount of printout needed:
If LLL - 0, printout for diagnostic purpose;

LL3 - 1, print element positions and rotation
angles;

LLL - 2, print pattern function only;
LLL>2, no printout.

LBP - If it is zero, the scanning is obtained by using
row-column planar-array phasing. If it is one,
exact conformal-array phasing is used.
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NBP - Number of phase-shift bits used in digital phase

control. If NBP is greater than 10, analog

phases are assumed.

The second data card (or set of cards) depends on whether or

not the ELAGPO subroutine is needed. If it is needed, then which

particular ELAGPO subroutine is used. First, we will discuss the
set of data cards needed when the ELAGPO subroutine is not used.
In that case the data cards should contain all the element posi-

tions, the element orientations (rotation angles), and the speci-

fication of the ground plane. The data cards should conform to

the following read and format statements:

READ 101, ((W(I,J), I - 1, NE), J - 1,3),

READ 101, ((G(I,J), I - 1, NE), J- 1,3),

READ 100, (LG(I), I- 1,3),

101 FORMAT (8F10.6),

100 FORMAT (615),

where

W(IJ) are the element positions,
G(I,J) are the element rotation angles,

and the

LG array specifies the ground plane of radiators as follows:

If LG(l) - 1,LG(2) - LG(3) - 0, the ground plane is the zy plane;
LG(1) - LG(3) - 0,LG(2) - 1, the ground plane is the xz plane;
LG(l) - LG(2) - 0,LG(3) - 1, the ground plane is the xy plane.

When the subroutine ELAGPO is used to compute the array ele-

ment positions and orientations, the second data card contains the
description of the conformal surface and the array dimensions.

For a doubly curved surface (with uniformly or projected uniformly
spaced elements), the second data card should contain seven vari-
ables conforming with the format of 215,4FI0.6,12. These

variables are:
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NCX - Number of columns in the x direction.
NRY Number of rows in the y direction

AX Aperture in the x direction, in wavelengths
AY Aperture in the y direction, in wavelengths
RX Radius of curvature in the x direction, in wavelengths
RY Radius of curvature in the y direction, in wavelengths
LP If LP - 0, the array element is a horizontal dipole;

if LP - 1, it is a vertical dipole.

When the subroutine ELAGPO for a conic array is used, the
second data card should contain eight variables conforming with
the format I5,5F10.4,215. These variables are:

MM - Number of rows;

RB - Base radius in wavelengths;

ARC - Cone arc (in degrees) occupied by the array;
TC - Cone angle in degrees;

DX - Spacing in the x direction, in wavelengths;
DY - Spacing in the y direction, in wavelengths;
LP - If LP - 0, the array element is a horizontal dipole;

if LP - 1, it is a vertical dipole;
LRT - If LRT - 0, the array element distribution is on a

rectangular grid; if LRT - 1, it is on a triangular
grid.

The third and the fourth (or last two) data cards should con-
tain the angular range and the plane in which the radiation pat-
tern is desired. The third data card should contain one or more
values of 0 [FI(I) in degrees] defining the plane or planes in
which the radiation pattern is desired. This data should conform
to the format 8FI0.6. The last data card contains four variables
conforming with the format 8F10.6; these variables are-
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FIO Scan angle 00 in degrees,
TAO - Scan angle 00 in degrees;

TAPI - Initial value of e;
TAPF Final value of e over which the radiation pattern

is desired.

1.4.2 Examples

A few examples of computing the radiation patterns of a con-
formal array are included here which illustrate several features
of the program.

The first example considered is uniformly spaced circular-
arc array with 32 elements, as shown in Figure 48. The individual
elements are assumed to be vertical dipoles (dipoles normal to the
array plane). The array aperture in the x direction (projection
of the array arc onto the x axis) is assumed to 15.5X, so that the
average interelement spacing in the projected plane (x axis) is
0.5A. The interest here is to find the radiation pattern when
scanned to 150 in the array plane (0 - 00 plane). Since the
interest is in an uniformly spaced circular-art array, the sub-
routine ELAGPO for a doubly curved surface with uniformly spaced
elements is used. The four data cards for this example have the
following values:

Data Card 1: NE-0, NC-1, NP-361, LLL-2, LBP-l, NBP-11
Data Card 2: NCX-32, NRY-I, AX-15.5, AY-0., RX-12.66333,

RY-0., LP-1
Data Card 3: FI(I)-O.

Data Card 4: FO-0., TAO'15 . TAPI.-90°, TAPF'90 0 .

I Using these data cards, the computer prints (printout not

included here) the values of the normalizing factor, the normal-

ized values (expressed in dB) of the radiation field at 361

values of 0, with increments of 0.50 over the interval -.90<<9 0 ,
and the steering phases used to scan the be=m. In this example

II
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it is specified (LBP - 1) to use correct steering phases. The

computer output includes a plot of the radiation pattern which is
shown in Figure 49.

The second example is the same as the first example except
that the array elements are assumed to be projected uniformly
spaced (when projected onto the x axis they have equal inter-
element spacing) on the circular arc, as shown in Figure 50. The
advantage of this type of distribution is that the pattern can be
scanned using simpler row steering of a uniformly spaced linear
array (Rao & Hsiao, 1974B), as will be illustrated in Example 3..
The data cards for Example 2 are the same as those of Example 1.
However, the subroutine ELAGPO for a doubly curved surface with
projected uniformly spaced elements is used instead of the one
used in Example 1. The computed radiation pattern is shown in
Figure 51.

The third example is the same as the second example, except
for the steering phases used to scan the array pattern. In this
example, approximate steering (linear array steering) phases are
used instead of the correct steering phases. So the data cards
are the same as that of Example 2, except that the value of LBP
in the first data card is changed from 1 to 0. The ELAGPO sub-
routine used is the same as that used in Example 2. The computed
radiation pattern for this example is shown in Figure 52.

The fourth example considered is a 7-by-13-element, uniformly
spaced array on a circular cylindrical surface, as shown in
Figure 53. The array apertures are assumed to be 3A in the x
direction and 6). in the y direction. The radius of curvature of
the circular cylinder is assumed to be 5.186A. To obtain a
broadside pattern in the * - 0 plane (xz plane), the data cards

should contain the following values:
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-Axe 15.5y

Rx

[7/

Fig. 48 - Uniformly spaced circular-arc array

Z -2Cr
IT-

cr -33

Cr

-90- 0-70-60-50 '10-30-20-10 0 10 20 30 40 50 60 70 80 90

A ZIMUTH RNGLE (DEGREES)
Fg.49 -- Radiation pattern of a uniformly spaced circular-arc aray
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005)k O.5%

.. .1 1 II

• /a

Fig. 50 - Projected uniformly spaced
circular-arc array

z -2

cr

Cr2
-5~

ci

-90-80-70-60-50-40-30-20-10 0 10 20 30 40 50 60 70 80 90

AZIMUTH RNGLE fOEGREES)

F1g. 51 - Radiation pattern of a projected uniformly spaced circular-arc array, scanned
to 15' by applying exact phase steering
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Cr_ -30
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MM II !I 11111 M I rnI rru .. "rmm, 11m. r11

-90-80-70-60-50-40-30-20-10 0 10 ?0 30 40 50 r0 70 80 30
HZ [lMJrH ANG[F (DEGREL51

Fig/ 52 - Radiation pattern of a projected uniformly spaced circular-are array, scanned
to 15* by applying linear-array phase steering
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Data Card 1: NE-0, NC-I, NP-361, LLL-2, LBP-l, NBP-I1
Data Card 2: NCX-7, NRYl13, AX-3.0, AY-6.0, RX-5.1816,

RY-O., LP-1
Data Card 3: FI(I)-O
Data Card 4: FIO-O., TAO-O., TAPI--90°, TAPF-90°.

Using the subroutine ELAGPO for a doubly curved surface with uni-
formly spaced elements, the radiation pattern plotted by the
computer is shown in Figure 54. The step changes noted in Figure
54 and some of the later figures are the result of the provision
provided in the program which makes it possible to drop the
element contribution whenever the element becomes invisible (due
to the curved surface) from the point at which the radiation field
is being computed.

"-,31-6

2t

-CI -9-0 -70-60 -50-140 -30 -20 -10 0J 1C 20 30 40 SO 60 '70 80 90
R7.IMUTH RNGLE (DEGREES)

Figure 54 -Radiation pattern of a uniformly sp~iced circular-

cylinder array
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The fifth example is a 7-by-13-element, uniformly spaced
planar array. The array apertures in the x and y directions are

assumed to be the same as that of Example 4. The broadside pat-

tern in the *-0 plane for this planar array can be obtained

using the same ELAGPO subroutine and data cards as those of

Example 4 by simply changing the EX value to zero in Data Card 2.

The radiation pattern for this planar array is shown in Figure

55.

Z -2

Cr

I IIII II

-5

-90 -80 -70.-60 -50-40 -30 -20 -10 0 10 20 30 40 S0 60 70 80 90

RZIMUTH RNGLE (OEGRLEES1

Figure 55. Radiation pattern of a uniformly spaced planar array

The sixth example is a 7-by-13-element array on a conic sur-

face with a base radius of 137.46X and a cone angle of 70. There

are seven rows, and each row contains 13 elements. The spacing

between the rows is assumed to 0.5X; the interelement spacing

along the base arc is also assumed to be 0.5k. It is assumed

that the array elements are vertical dipoles and that a rectangu-

lar grid arrangement is used. The coordinate system applied to

117
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this array is shown in Figure 56. The following values for the

data cards are used to obtain a pattern in the 0 - 0 plane with

zero scan angles:

Data Card 1: NE-0, NC-l, NP-361, LLL-2, LBP-l, NBP-11

Data Card 2: MM-7, RB-137.46, ARC-2.55, TC-7° DX-.5

DY-0.5, LP-i, LRT-0
Data Card 3: FI(I)0O

Data Card 4: FIO-O., TAO-O., TAPI--900 , TAPF-9 0 .

CONE ANGLE

fillu glilt

i 

iI!

it" Z1 it"
llSE

Figure 56. Conic-surface array
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The radiation pattern, obtained by using these data cards

and the subroutine ELAGPO for a conic surface, is shown in

Figure 57. Because of the conic surface, there is a cross-

polarization component which is plotted in the same figure as a

separate curve. In this example, the crosspolarization component

is quite low because the radius of curvature of the conic sur-

face is large and the array surface approximates a planar surface.

The final example illustrates two additional and useful

features of the subroutine ELAGPO for a conic surface. The first

feature is that this subroutine can be used for the arrays on a

circular cylinder by specifying the cone angle TC - 0. The

second additional feature is that a triangular grid instead of a

rectangular grid arrangement can be specified. In this example

an array on a circular cylinder with a triangular grid is con-

sidered, as shown in Figure 58. To obtain a broadside pattern

in the * - 0 plane, the following data cards are used:

Data Card 1: NE-0, NC-1, NP-361, LLL-2, LBP-1, NBP-11

Data Card 2: MM-10, RB-5.1816, ARC-33.167, TC-O., DX-0.75,
DY-.666, LP-l, LRT-l

Data Card 3: FI(I) - 0

Data Card 4: FIO-O., TAO-O., TAPI--90°, TAPF-90°.

The radiation obtained by using these data cards with sub-

routine ELAGPO for a conic surface is shown in Figure 59. Because

of the large value of DX(.75), the radiation pattern obtained by

using a rectangular grid (not included here) will have high side-

lobes. From Figure 59 it is clear that the triangular grid has

the effect of reducing these sidelobes.
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CROSS POLARIZATION
COMPONENT

9
z -2
I-

I-

a: -3

-50

-90-80-70-60-50-40-30-20-10 0 10 20 30 q0 SO 60 70 'j0 °0

RZIMUTH RNGLE (DEGREES)

Figure-57. Radiation pattern of a conic-surface array

y

Figure 58. Triangular-grid array on a circular cylinder
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-0

10

Z -2

3:
CL - _

a: -4
C-

-5"

-90-80-70-60-50-40-30 -20-10 0 10 20 30 40 50 60 70 80 90

RZIMUTH ANGLE MDEGREES)

Figure !9. Radiation pattern of a tr:.angular-grid array on a

circular cylinder
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APPENDIX A: DISCRETE APPROXIMATION

Suppose UI identical elements are spaced on the cylinder at the angles

"2iTap =21T (P + f
"P U

where p 0 0, 1.. -1, and ( is some fraction of the spacing that defines the

location of the first element with respect to the beam direction a 0. Let the

excitation currents be

I(ap)IAo'- a 1,cos nap (A-)

,l= 0

Tht pattern of an element at ap is

G (p - ap) , cos h?-a)
rn 0

(A-2)

SF,, cos m (p -ap)

m= 0

The far-field pattern due to the NI elements is thus

AI-1

ED (q,) I (ap)A a G ((p -ap)

p= 0

M-1 N M
2Tr 22w (p, f) Pmcosm (q_ +.. P÷[)=..• ~1 k'()• ,cos n FM'•

p=O n=O m=O
(A-3)

N Al %1l-I
rr - 2wn (pLc) 2ytm(p+fl

NI ](eKH ) FI n ICos cos -.-- Cos M (

2 msin sinmp

12ý

J .. .. . .'U, . - • st, ,"- .-.



After consideration of the possible cases, one may show that
"\-1

r (p+0 2Trm (p+f) 11
cos .- cos -- if '-=n but M4, 1

p=0

-- cos2iTf if m+n m, mn
EI

(A-4)

=1 Mcos 2f f if m.-n
and m+n =1

0 otherwise

Also, one may show that

Cos sin sin 2 Tr f if m+n = M

p=O (A-5)

= 0 otherwise

Thus (A-3) may be written in the convenient form

ED(1)) 2TrKf(E0 Cosn ()
En

(A-6)

In
+ 2•TK/ (0) 1- F•~n [cos 27Tf cos (l-n) + sin 2Trf sin (M,%-n),]

n-0
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APPENDIX B

PROGRAM - COFLARAY
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PROG~RAM1 CUFLAR,,Y
COM-MON/l/PLTAkkAY(25,4),FMAT(1OOO,3)
COMMON/;e/G(1OOO,3)vv.41OOO.3)
COMMU~N/3/kNIATi 10O.093) *DAT(393) or NAT( 3) sTEMP( 3)
COMMON/4/FI (10)
COUMMON/5/DMATUP( 3.3)
COMMON/6/LG(3)tA(3) *u(3)
DIMENSION CR(3)9CI (3) ,bP(lQU0)

C
C ENhTER PLOT FRAME PARAiNETLRS

CALL PLOTS (PLTAH4'AY*254#1d)
XM=960
YMaU,.

SYMzSY+YM
YSL=609
NY=60

C
C ENTLR RANDOM NUMUiER SELL)

RSwT IMLF (XI
CALL RANFSLT(HS)

C INPUT DATA
C -ARRAY9 THREE COORD)INATE ROTATION ANGLES FOR EACH- LMN

C W-ARRAY ELEMENT LOCATIONS
C ROTAJIONAL CUNVLt4TIOvs-CLOCb0.ISL. FROM PRIMED TO (.JNPRIMLD COORDINATE
C IS CONSIL)LREU POSITIVE
C ROTATIONAL SE~UULNCES-X*YeZ
C LG ARRAY SLCIFILS THE GROUND PLANE OF RADIATORS
C LG11)w1.LG(2)=LG(3)=O ZY PLANE
C LG(iI=LG(3)w09LG(2)1,9XZ PLANE
C LG(1:LGj(2130.LG(3181,XY PLANL
C NE-NUtidER OF ARRAY ELEMENT
C NC-NOMbLR OF A;4TENNA PATTERN CUTS IN ANGLE FI PLANE
C NP-NUMbLER OF POINT OF ANTEN14A PATTERN TO BE PLOTTED
C LLI.zUwSET PKL.4T-UUT FoeK UIACJNUSTIC PURPOSE
C IF LLL:1. PRINT LLEMLNT5 POSITIONS AND kOTATION ANGLES5
C IF LLL=2* PRINT PATTERN FUNCTION ONLY
C IF LLL GREATER TH-AN 2 NO PRINT-OUT
C LbP=09APPROXIMATE BY A PLANAR ARRAY PHASE
C LbP=IowITH CORRECT CONFORMAL ARRAY PHASE
C NbPt NOe OF PhS&. SH-IFT UITSPII- NoP*.GT*1O CONRCLT PHASES ARE USED
C TAP19PATTLRN PLOT STARTINGi ANGLE
C TAPFPATTERN PLOT FINAL ANOLt
C
C ENTER INPUT DATA

KKu0

93 READ 100#NE9NCvNPsLLL#LbP9NbP

IF- LOF .60)99.91
91 IhiKK*&U@0)GO TO 92

CALL RELZEROXM)
V2 KKal

IF(NE*LL.O)GO TO I
READ 101,1 IW(I.J).II9Nt),J*1.3)

REAL) 101.1(LG(I,)91&1 NEJs33

GO TO d
1 CALL LLAGjPO(NtvLP)
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2 IF(LLLoGT*1)0O TO 201
PRINT 104
Do 2Q2#.1*13

202 PRINT 102*(W(tA9I)9N1,sNE)
PRINT 105
Do 212 1.1,3

212 PRINT IQ2*(G(NvI)sNz19NE)
201 PI31196.i*733~

ATRaPI/ 180.
C
C COMPUTE TH-L R-MATRIX

DO 10 lal*NE
10 CALL CUUTkF(I)

IF(LLLoGT*O)GOv TO 203
D0 204 1=1.3
DO 2U4 J*1.3

204 PRINT 1029 (RfAATfLIJ)sL=19NLol0)
C
C DLTLRMINE FIELD POIN-T ANOjLLS
203 REAL) 10191FI(1)$I-19NC)
101 FORMAT( 8F1O.6)

C LNTk.R SCAN ANGLES
RLAD 101*FIUtTAUTAPI*TAPF
F IOwF I*ATR
TAO TAU*ATR

TAP IRsTAPI*ATR
T AP Ft= T A PF*ATR
TAINCz(TAPFR-TAPIR)/(NP-1)
TAAIN(.ATAINC./ATH
JN*(NP-1)/3
COTAOxCUSFI(TAU)
SITAOmSINF( TAO)
COF IO=COSF (F 10)

SIPIOmSINF(FIol
XP&SITAO*COFIO
YPwSITAO*SIFIO
ZPOCUTAU*LBP+1 ,0-LUP
00 7U K-1,NE
BPK=WEV.,1 *XIP+WIK92 VYP+ W(K*3)*ZP

IBPK=BPK-lNTF(RiPK)
IF[NtbPGTo10) GOTO 73
UP( K =0'
DO 71 Nm*1NdP
8181/9*
IF(dPK*LE.Blk'U TO 12
bPKxbPK-aI
BP(K)681+BP(K)

72 IF(NeNteNSPIGO TO 71
RaRANF (-1)
IF(f4.LT*.5)GU TO 71
BP IKl1b 1i8P CK)

71 CONTINUE
GUTO 70

73 BP(KJmbPK
70 CONTINUL

C
C COMPUTE PATTERN
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DO 20 1811NC
Fl (I Du I II*ATR

CUFIUPOCO5F(FI(t))
SIFIUPBSINF(FI (I)
FNORO.9
DO 3U JxI.NP
COTAUPmCOSFE TA)
SITAuP=SINF(TA)
CALL (WNMAT(COFIUP,51f IUPCUTAUPSITALJP.oUATUPI
IF (LLL.GT@O)GO TO-211
.JMOD=MUD(J*JNI
IF(JMOD.NEol)(20 TO 211

TAANG-TA/ATR
PRINT 1099TAANG
PRINT I02.( (OMATUP(L9M) .M=1 ,3) .L:1 3)

211 DO 31 Lul,3

XF=SITAuP*COF JUP
YE -SITAUP.S IFlup
ZE-COTAUP

C
C SUM THE ELEMENT CONTRIbUTION

D0 4U K1.*NE
COF ICOFIvP
SIF I=SIFIUP
COTA=COTALJP
SITA=SITAUP

C
C TRANSFER ANGEL FROM UNPRIM'EL) COURDINATL To PRIMED COORDINATE

CALL ANGTRF(COFI ,SSFI.COTASITA.~,LJG)
IF(LLL*GT*O)bO TO 209
KMODaMOOIKo10)
IFIKMOD*NE.1 R*ORJMOU#Nt-@l)UU TO 209
PRINT 1089K
PRINT 1uz.COF195JIr COTAp6ITA
PRINT lU2*(A(L)#Lu1*3D *(b'L) 'Lz'3)

C FORM D MATRIX
209 IF(LJU.LE.O)C.O TO 40

CALL iPNMAT(COF1.SIF1,(LTA,6LTA.OMAT)

IF(LLL*GT.OIGU TO 205 o 0
IF(KMOO.NE.1 *OM.-JMOV.Nt.1)oOTQ20
PRINT U.(MALA,=3ILiJ

C

C CNTALL MALTPAUTTLN UCTO

IF(LLL.OT*0ODOU TO 207
Ir(KMOUONL.1 v*o'~Jf0;,.ý;(vL.1k. TO 207
PRINT 102#(TLNYP(L~ ,L~o31

C
C FINO THL PrIASE
207 PHASL= Vv(K~,1)*Xý+idKs2)*YI.+W(K9~3D*Zf

PHASLXP12*(PHASL-bPfK))
PRLcOIU) (PI1ASLI~
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PIM&SINF (PH~ASE)
C
C FORM PATTLRN FUNCTION

00 41 L*1*3
CRIL ) :Cj~Ll4TLt-PfL)*PRE

41 CI(LI(-CI(L)4.TLMPiL)*PIlI
40 CONTINUL

u0 32 Ls1,3
FMATIJSL)aCR(L )**24.ClI(L)**2

32 IF( FMAT(JtL)o~lT*FNOR)FNORmFMATIL
30 TAnTA4TAINC

XSLATAPF-TAPI
NXEXSL
IFtIL.EO1)GO TO 21
CALL RLZERO

21 CALL FkAML(XM9YM*XSLtYSL#N~vNY#TAPI)
IFILLL.GT.2)GO TO 213

PRINT 107sFNOR

C
C PLOT ANTENNA PATTLkN
213 D0 6Q~ KS

TASnTAPI
LM80
U0 50 L=19NP
FMAT(LoK)=FMAT(L#K)/FNOH
IF(K.LL-1)GO TO 5O

IF(FMATCL*K)*uT.0*OOOOO1)GU TO 
52

FMAT (L#K) u-YSL
GO TO 53

52 FtMATlL9K)w1O.*ALUbOF)AI~
53 Y=YM*i11.+FMAT(L#K)/YSL)+Sy

XUs TA+90.O I*XM/XSL

f IF(Y*GTeSY)GO TO 56

ys $y
GO TO 54

56 IF(Y.(,T.SYM)yzsym
IF(K.GT.2)CGO TO 54

IF(LM*GT.o0GO TO 55

CALL SYMbOL (XvY906o3t0.9-1)
Go To 57

55 CALL SyMbOL(XY9*06%300.*9
2 )

GO TO 57

54 IF(LM.(jT.0)()O 10 51

CALL PL~f(x9Yv3)
GO TO 57

51 CALL PLUT(X#Y,2)
57 LMAK1
5O TAaTA+TAAINC

IF(LLL*GT*2)GO TO 60
PRINT 103*K
PRINT I06stFMAT(JsK) ,J=I9NP)

60 CONTINJL
20 CONTINUE

PRINT JlO,(SP(K)9K=ISNE)

110 FORMAT(//,LOX,*STLLRING PHA4L*#//S(IGX~lOFl~eb))

GO TO 93

r99 CALL STOP PLOT
100 FORMAT(615)
102 FORMAT( /,(10Xl0L12v3))

103 FORMATt//,2OX,*ARRAY PATTtRN (Db)*,SX**K=*0IS)

104 FukRMATI//*2OX,*LL~piLNT LOCATIONS*)

105 FORMHAT4//*2OX9*~LLEMLNT ROTATION AN()LLS*)

106 FORMAT I//e( 1OX,10F12*b))

107 FOkMAT(//91UX,*ARNAY NORMALIZING FACTQH*,sXvF1S*63

10ds FORMATI//91OX9*ELLMENTIS) 
{
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SUBHOUTIN&L LLAUPU(NLLP
C THIS bUOROUTIsilL IS kJR A DOUbLY LLJNVLL 51WH-A(.L

CQ l0N/2/G(IUUO,3l9wl1IUOO3)
COMMUNi~lbCa(3) *A (3)su(3)

C GkOUINiL PýANE IS ON XZ PLANE
LG( l'ILG(3)20

C NRY9NO OF ROWS IN Y DIIkEC~TION
C NCXv NO OF COLUMN IN X UIILc.TION
C A)~, X-UIRLCTIUN~ APLHIIJLe V4~ viAVLLLNGjTHS
C AYt Y-O&RLCTIUN APLKTUHL# 1.4 WAVLLLNQCTrIb
C kX# RAUIUS Oý LOIRVATOKjL INi X UlLC.(1sI%.l
C RYv RAUIuS 0f (AJRVATLJRL IN Y L)IRLCTION

P 1u3. 14I9265ibd9"1.,23d46
Plki=PI /2.

C LP*O. HORIZONTAL UIPOLrtb, LPzIv vt.HTLCAL UIPOLES
C THE Flib'.T ~Lb.MLNT STARTt.D AT -X ANID -Y

RLAU 1OONCXoNRY ,AXqAY .NA9Hv.LP
100 FWR'M-AT (2l59 4F1O 106.I)

PRINT 1U19NCXNRYtAA9AY9RAqRY9LP
101 FORMAT(1OX,21594F10.4*15)

IF(RYeLlJ#0.IGO TO 2
ARCYlrfASINFI .5*AY/tRY)
ARCY:2 .*AHCYH1
ARCYIN(.zARCY/(NkY-I)

2 IF(RX*t.J.0.)6U TO 3
AKLXt1-MSINF (.!*X/X
ANCXn2.*ARCXH
ARCXINC=AkCX/CI,.CX-1

3 IFCN(X-1*LQO.OUU TO 8~
DX=AX/ INCX-1)

a IF(NRY-1*EOQcJJGO TO 9
V)YaAY/ INRY-1)

9 AUGY=AUJGX:0.

U0 1U 1=19NRY
IPikY.OjT*Olo)U TU 4
YS=( I-1)*DY-AY/2.

AUQYYý0.
GO TO 5

4 A~JGY=( 1-1)*ARCYINC-AkRLYti
YS=RY*b~I4F CAOOY)
ZS=RY*COSF(CAUUY) -i&I
AUUYY=AOGjY

5 DC 1U J=19NCX
LL=LL+1
IF(RX.UT*0.)UU TO 6
XS= (J-i )*LJX-AX/2.

AUjXXý0.
GO TO t'

6 AlJ3X=(J-1)*AkCXINC-i~'kLXh

Xb.RX*SINF(cAU6X)

AIJUXX=iO~iX
7 '. IL L t . mXS

*When the array elements are uniformly spaced.
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IF(LP*UT*0)GU TC I
G(LL,1)ýPIH+AU6XI G C LL 92) JAUCGYY

G( LL .3)=0.

10 CUNTINUL
NEzLL
RETURN
ENU

130 /

441



SUBROUTINE ELAGPU(NEeLP)
C THIS bOdR~UTINL IS FUR A UOO~jLY CUKVLU) SURF-ACL

CQMMUN/2/G.(1Oyo,3)9w(10O0o3)
COMMON'/6/LG(31 .A(31 ,u(3)

C GROUND PLANE IS ON XZ PLANL

LGE 1 =LG(3)=O

C NRYNO OF ROWS IN Y DIRLCTIUN
c NCX9 NU OF COLUMN IN X UIKL(.TIU"N
c AX9 X-L)IRLCTION APLRTUlRL.If 114AVLLLNwlrib
C AY9 Y-L)IRECTION APLRTURL# IN WAVLLLNGIH6
C RX* RADUJS OF CURVATURL IN A UIKLCIIUN.
c RY9 RADIOS OF CURVATURL IN Y UIRECTION

P1=3. 1415926535891932.3,46

C LP=O% HORIZONTAL DIPOLES9 LP=1, VER~TICAL DIPLLES
C THE FIiKST ELLMLNT STARTLO Al -X ANU -YI

ALAD 100,NCXNt'YAXAYsRARTLP

100 FORMAT(2I5o4F10.6#I2)
PRINT 1019NCX9NRYAX*AYsRXvr0YLP

101 FORMAT I10X#2I594F1094915)
IF(NRY-1.EQ*O) GOTO8
DY=AY/ INRY-1)
GOTO 20

8 DYZO.U
20 IF(NCX-1.EQ*O) (,OTO 9

DX-AX/ INCX-1)
GOTO 22

9 DX=0.U
22 AUGY=AU(JXnO.O

LL=O
DO 1U 1=19NRY

4 YSu(1-1)*UY,-AY/2.U
IF(RY.UT*O*) (aUTO 4
ZSzosO
AUGYY=O.O
GOTO 5

4 AUGY=ASINF(YS/RY)
ZSxRY*CUSF (AUGY2-RY

AJiJGYY=AUGYj
5 D0 10 Jn19NCX

LLsLL+1
XS I J-1 l*UX-AX/2.O
IF(RX9or.O*. (UTO 6
ZXS=w*O.
AUG XX:-0*0
GOTO 7

6 AUGXn ASINF(XS/RXJ
ZXSzkx*COSF(AUUaX)-IRX
AUGXXzAO(GX

7 W(LL.i)uXS
W(LL .21 'Y!
WILLo3)nZS+ZXS
IF(LP.GTsO)GO TO 1
GILL*.1)uPIH+AOOX
GILL .2 IAUGYY
GILL .3)wPIH
GO TO 10

I G(LL*I)EPIH-AUbaY

When the array elementa ae projected uniformly spaced.
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(WLL. ',? =AUGXX

10 CONTINUL
NL=LL
R L T U~ RN
EN U
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SUdRouTINE ELA2ýPONL@LP)
C THI-S %UbROUTINt 1S FOR CONIC ARRAY

COMMON/2/G(1O'v0O3) eW(100093)
COlMMoN/6/LGI3)sAi3)qb(3)

C MM% NUMBER OF ROWS
C Rbs BASE RADIUS
C ARC# CONE ARCH1
C TC CONE ANGLE
C DXv SPACING IN X-DIRECTION
c DY, SPACING IN Y DIRtCTION

C LPu09 lURIZUNTAL UIPULLS9 LPa1. VLRTICAL DIPOLES
C LRT1,t TRIANGULAR GRID'

C LRT~ut RECTAN6ULAIR C1RI

READ 1009MMRb9ARCTCUXI)YsLPLKT
100 FORMAT(15,5FIO*692I2)

PRINT 101 ,MMR8#ARC*TCDXDYLPLRT
101 FURMAT I oXvI595Flo.4#ZI5)

C GROUND PLANL 15 ON XZ PLANE
LG( 1)ýLUC 3180
LG(2)=l

2 PI=3.1415926.5358979323846
P 1HmP112.
ATR=PI/ 180.
TC=TC*ATR
A RCz8ARC *ATR
ARCHI=AkC/Z.
T TC= TANF(ITC)
100
0O IQ MolMM
IMOD=MUL)IM-1.2)*LRT

kx~i-(!-l*DY*TTC
RL=R *A i<
DaR*SINI (ARCH-I
NNaRL/.)X~1
ARC I N,.AkL/ 104- 1)
NNzNN-11:-UD
DO IQ J*11,N

AUG(I:(1.J-.b*IMOU)*ARC-INC+AN~ti
w([.1 ýLCSF (P lH-AU(j)*
W(I#I?)xLuY*(tAI)
w(Is3)rSINF(PlrV-AUL,l*R-u

Gil .111-AujuePi~

GO TO 10

10 CUNTINUL
NE w I
kETURN
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SUtiROUT INE CuUTRF CL)
COMvMON/1/PLTARRAYC254)sFMATC1

0 0 0 4 3)

CUMMONj¼Z/GC10UOv3)9W(1OOO9
3 )

COMMON/3,RMIAT(100O,3,3),DMAT(i,3)LMATC
3 )oTEMPC

3 )

DIMENSION A(393)9b1(3*3) ,C(3t3)
COX=COSF(GCLtU
COY=COSF(C2CLo2))
COZ=COSF(G(L,3))
SIkX-,5INF(G(L9I))

SIY=SINF(GCLP2))
SIZ=SINF(G(L*3)

C F-IND THE X RATATION MATRIX

C(192)=C(193)=CC2#1)=CC3o)=O
C(2 ,2)=C (393)=COX
CC3,2)=SIX
CCZ,3)=-SIX

C FINU THL Y NOTATION MATRIX

BC 1, 1l)=(3#3)=COY
BC 1 3)=SIY
B(3sl1=-SIY
8(1 ,2)=B(291)=bC2s3)=(3#2)O~s
B(2#2)=1.

C FORM MATRIX PRODUCT
DO 10 1=193
DO 10 J=103

* DO 10 K=1#3
10 AC I J)=AC I J)+BC IK )*CCK*J)

C FORM Z-AXIS ROTAT+ON MATRIX
CC 1o1 =C1292)=COZ
CC2#1)=SIZ
CC1#2)=-SIZ

CC313)=lo
DO 2U 1=193
Do 2Q J=193

* I RMAT CLo*J ) 0*
DO 2U K=103

20 RMATCLI,.J)UW4MATCLI,.JJ+C( I:,)U*AiKJ)

IRETULR:C
END
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SUBROUTINE~ UPRMIAT((-OF1,S[I,(.COTA,51TAU)MATý
DIMENSIO.N DirAAT(3*3)

DNIAT (1,1 ) I TA*COF I
DMAT (1 '2 CUTA*COF I

DMAT(291 )=S ITA*S IFI
I)MAT ( 2s2)=CUTA*Su II

DVAT (2.3 )COF I
OMAT (3.1) =COTA
DMAT (3o2 =-S;TA

* L)MAT ( 393)=O
R LTrURN
END.
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SCUoROC.TINE ANOTNF(COFIeSHýIPCOTA,51TALLJbjC
Co.-MoN/3/RrAAT 11000*3,.3),90iAT 3 93 9EMAT( 3 9TEMP 3)
CUMMON/6/LGC3) .A(3)#n(3)
LJGIl
bC I) SITA*COF I
b(2 )=.IiITA*S IF I
B (3 ) =CLu rA

0O 2U 1=1,3
A( I )=0.
DO 1ý; K=193

10 AC I )A( I +RIAATCL#KC C*LCK)

IF(ACIC.C,1.O. *UR.Lu(I).LT.±Ck,U TO 20 I
20 CONTINUE

COTA=A(3)

SITA=SQ.,T 1.-COTA**2)I
IF(Ab5(Al1))s.jT.1.L-1OCGO TO 1
COF I =0.
S IF I1=1I
GO TO 2

1 TGFI-=A(2C/AC1)

SIFI=5URTC1.-COFI**2)
2 COF C SIONF-(COF I A( 1))

SIF I=SICNF (SIF I A( 2))

99 RLTURN
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SUBRouTINE ELPAT(COF19SIFIpCOTA9S1TAsLP)
COMMON/3/RMAT(IO003o,3,3iMAT(393),LMAT(3).rEMP(3;
EMAT (11=Oo
EMATU( )=-SITA*(LP-1)
EMAT 3)=S ITA*LP
RETURN
END
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SUBROUTINE MATMUT(L)
COMMO': l/PLTARRAY(254)sFfAAT(i00O,93)
CUMMON/3/kMAT'')00,3,3).D:-iAT(393),Lr1IAT(3),TEMP(3)
CUMMONS/5/.MATUP (3.3)
DU 1 '; 11o3

t TEMP( I (so.

DU 10 J1,o3
10 TEM P (I I )= T EMP I ) +)LiA T 1 .J IA *E4T (J)

DO 2u t1=10
EMAT (((=0.
DO 20 J = s3

20 EMATI I)=EMAT( I)+RN~tTCL.I *j)*T~iMP(J)
DO 3'j 1=193

DO 30 J=193
30 TEMAP( I )=TEMP( I )400ATUP(JI (*ýLMATCJ)

RET UR N
END
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SUBROUTINL FFRAML(XM.YMXýSLYSLNXNYTAPIl
C NX*NUMOLN UF DIVISIONS ON X-AXIS
C NY*NUMBER OF DIVISIONS ON Y-AXIS
C YMMAX LENGTH OF Y-AXIS IN INCH
C XM*PiAX LENGTH OF X-AX15 IN INCH
C SYuSHIFT OF ORIGIN ON V-AXIS
C MNe HLIGHT OF LABLLINQ. CHARACTLlK IN MULTIPLLS OF 0*035
CXSL*YSL-X-AAISoY-AXIS SCALE
C LLui.FOIR Ub SCALL*LLzOoFUH AbSOLUTE VALUE

CO44MON/l/PLTAk4RAY(254) .FMATI1000.31
SYw2o
HN=5*
VMSYRYM+SY
HLAbaHN*.035
HLASsHLAB+.035
WLAt1z4o*HLAB/7*
XSCLxXSL/NX
YSCL=YSL/NY
DY. YM/NY
YEsy
NNY=NY~l
CALL PLNCHG(12)
CALL PLOTIO*95Y#3)
CALL PLUT(XM#SY92)
CALL PLUT(XM#YMSY92)
CALL PLQT(OesYMSY,2)
CALL PLOT(0.,SY92)
CALL PLNCHG(1l)
DO 1I. J*1,NNY
CALL PLOTIOssY,3)
MODY=MouI J-i,1
IF(: Y@NE*).30U TO 11
CALL PLOTI-e2#Yo2)
AsYSCL*(J-1 )-YSL
CALL N~IE(7.*L ,-LH2tH~oto4HF4.0)
GO TO 10

11 CALL PLOT(-oltY92)
10 YuY..Y

DX. XM/NX
NNX=NX+1
DO 20 K-19NNX
CALL PLUT(XSY*3)
MODX=MUD( K-i,10)
IF(MODX*NE@016O TO 21
CALL FLOT(X*SY-*2.')
AO(K-I )*XSCL+TAPI
CAJ.L NUMbER(X-3.!*WLAu.SY-fLAb*2.5,HLAbAO.,4hI.4.O)
GU TO ýeO

21 CALL PLUT(XSY-e1,23
20 XUX+DX

CALL j>YMOUb~L( et*XM-20.:P*WLAbitb.*HLAb+SYHiLAS,2214AiIMUTh ANGLE(DEGR
CEESI .O.,22)

33 CALL SYAbUL (-9.0 WLAUYM/2.4SY-13.7*WLABHLAS.1?I-AkRAY PATTERNIOB
U .90*917)

3.2 CALL PLUT(OetU.,3)
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SUB3ROUTINE REZLRO(XM)
CMMON' 1/PLTAR~Y 

b).MT1003

CALL PLOT(XMO*5.O'.
3 )

99 ENO~
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SUtbROUTINE PLNICHG( IP
RE TURN

ENU
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CHAPTER 2

APERTURE SYNTHESIS

2.0 THE SYNTHESIS PROBLEM

Although some conformal arrays are used to provide omni-

azimuth coverage, more often the objective is to produce a

pencil beam for communications, radar, etc. Both fixed beams

and electronically scanned beams are of interest. The desirable

pattern is often a narrow beam with low sidelobes and sometimes
a difference pattern with low sidelobes. The narrowest beam-

width for a given sidelobe level is produced by a Chebyshev

pattern; DuHamel (1951) developed a methodology of calculating
the coefficients for ring arrays. However, equal sidelobe arrays

tend to have a high Q so it is generally desirable to utilize a

tapered sidelobe envelope in order to make the array excitation
robust. The one-parameter modified sin x/x space factor devel-

oped by Taylor (see Hansen, 1964) is often used for arrays. This
can be applied to circular arrays in several ways, by repre-

senting the array as a Fourier series, as a Bessel series, or as

a polynomial. Then the coefficients are determined from the

Chebyshev polynomial (Taylor, 1952; Tseng and Cheng, 1968). As

in the case of linear arrays, a tapered amplitude excitation is
required. If the beam must be electronically scanned, then the

tapered excitation must be rotated, unless a mechanical coupler
such as a goniometer is used. There have been attempts to reduce

sidelobes via phase adjustments alone, but these are not satis-

factory (Coleman, 1970; Goto and Tsunoda, 1977; Watanabe et al,
1980).

Sidelobe level and envelope taper are generally the qualities

most important in array patterns. It is, however, possible to

maximize the directivity or some other performance index. When
continuous apertures are optimized, a constraint relationship is
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needed, but with an array the constraint is provided by the
fixed number of elements. When the array index is expressed as
a ratio of quadratic Hermitian forms, it can be maximized and
any combination of index parameters can be used (Cheng and Tseng,
1967). Difference pattern parameters such as slope (Powers,
1967) or directivity (Bayliss, 1968) can also be maximized at
the expense of sidelobe level.

For an array on a cylinder, the pattern can be synthesized
by using a constituent linear array along the axis and a consti-

tuent array in azimuth. However, as pointed out in Chapter One,
the cylindrical array excitation is nonseparable. That is, to
produce a given pattern (sidelobe level), the required excitation
changes with angle between the pattern plane and cylinder axis.
Arrays on surfaces of other shapes are even more difficult to
handle. For spherical arrays the pattern may be expanded in a
spherical harmonic series and the array coefficients determined
from this. This is a laborious but straight forward procedure.
A similar procedure can be used for conical arrays, but in the
case of a cone it is not possible to cover the surface with a
uniformly spaced lattice of elements. For both cases, the har-
monic series approach to pattern synthesis becomes unwieldy when
the radius of the sphere or cone base becomes large in wavelengths.
For these cases, which include most practical arrays, a projec-
tive synthesis method is more useful. In this projective method,
which is discussed in detail in the rest of this chapter for
conical arrays, a fixed beam virtual planar array is located at
the base of the cone with the planar array axis pointed in the
desired beam direction. Using the Equivalence Principle of
Schelkunoff the field on the cone can then be determined.
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2.1 Projective Synthesis

In previous studies (Kummer, et al 1970, 1971, 1973;
Munger et al, 1974), an equivalence principle was applied to

the problem of determining the distribution of sources on a

cone to produce a prescribed pattern. By this method, more con-

ventional sources such as planar or linear arrays are replaced
by sources on a conformal surface such as a cone. The method and

patterns synthesized by it are reviewed in this section.

The problem of interest is that of forming various steerable

antenna patterns by distributing sources over the surface of a

vehicle. The patterns that are desirable are essentially those

that would be obtained from a circular or an elliptical planar

aperture. The beam would be steered electronically.

The initial problem is to produce the pattern of a con-

ventional antenna such as is illustrated in Figure 1, by sources

on an aerodynamic surface. The conventional antenna is repre-

sented by a source distribution 2i, Ai of electric and magnetic

currents that produce the desired fields 2, R as illustrated in

Figure 2.

Figure 1. Array with conventional pattern.
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IE. H

FIELDS

ACTUAL SOURCE DISTRIBUTIONS

Fig. 2. Source.s & resulting fields

If the actual sources are surrounded by a closed mathe-

matical surface S, the fields 6, R exterior to S will result if
the actual sources are replaced by equivalent sources s and s
on S where

-" x t (la)

Fi xi (ib)

and R is the exterior unit normal to S as illustrated in Figure
3 (Harrington, 1961)

The equivalent sources produce no fields within S. Con-
sequently, the mathamatizal aurface S may be replaced by a
perfectly uonducting surface that lies Just inside the equivalent
source currents 3 and is without affecting the external fields

146

S. .... ... • ... .. .... ' • •... .., • • . . . .. . .. • . . . ...... • :•' . ... i ' • ..... . ... *



SEQUIVAET J

SOURCESE. H
FIELDS

0n

CLOSED MATHEMATICAL
SURFACE

Figure 3. Equivalent sources on mathematical surface.

E, H as shown in Figure 4. The perfectly conducting surface

short circuits the electric source currents. Therefore, the total

field outside the surface may then be found using only the mag-

netic currents R radiating in the presence of the conductor as
S

shown in Figure 5.

EQUIVALENT •Jl
S8SOURCE S I

E, R
FIELDS

PERFECT
CONDUCTOR

Figure 4. Equivalent sources on conducting surface
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F ~FIELDS
MAGNETIC -

CURRENTS. M,

PERFECT
CONDUCTOR

Figure 5. Equivalent magnetic sources on conducting surface

Consequently, if the proper equivalent magnetic source

currents can be synthesized on the conducting surface, the

original field will result at all points exterior to the surface.

In the case of interest, the original source is a planar array

and the metal surface is a conical or ogival surface. The mag-

netic current sheets are surface distributions of magnetic

dipoles, A magnetic dipole can be approximaLed by slots on the
metallic surface. By proper oriertation and excitation of slots

on the metallic surface, the desired exterior field can then be

approximated. The required source distribution is known exactly

since the initial fields are known. In the following discussion

this approach is applied to finding the equivalent sources on a

cone to reproduce the pattern of a planar array.

2.1.1 Description of Reference Antenna

The antenna utilized in determining the sources on a cone
that are equivalent to a planer Rrray is !.llustrated in Figure

6. It is a circular planar array of parallel slots that may
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2Y

Zi

% I 1

\'s

Figure 6. Planar array located within
conical surface

be oriented arbitrarily within the conical surface. Its pivotal

point is located far enough from the cone apex to permit

arbitrary angular positioning of the array without intersecting

the conical surface.

It is evident that the positioning of the equivalent planar

array in Figure 6 does not take full advantage of the total
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conical surface when the beam is pointing directly ýthrough the

cone tip. However, this arrangement is a relatively simple

one that provides an invariant pattern as the beam direction is

changed. It is possible to take advantage of the total conical

surface as the beam is moved through the cone tip by making the

diameter of the equivalent planar array larger. The array may

be moved -ack along the cone axis as a function of beam position

so that the equivalent planar array just fills the cone base

when it is looking through the cone tip.

2.1.2 Near Field of Planar Slot Array

In accordance with the field equivalence principle, the free
space pattern of this array can be approximated by wagnetic
sources on the conducting cone that approximate the electric

field strength that would be produced over the conical surface
by the array. The coordinate 3ystem fixed with respect to the

planar array is a rectangular system deploted by xI, YI, Z1, with

its origin at the array center. The slots are directed parallel

to the yl axis. In this cnordinate system, the rectangular

components of the electric field strength from a yl directed slot

of length t, located at xla, Yl' 0 are

r ( )
_____o_ k 1 -3i Qo.k• la (I -Xa

S V exp(-jkr 1a) C ria/C0S (it r1  (a
Xl Tr la (X _ 2 (2a)

(iI Xla) + l2]

E 1150
ZI Fr la 

(X X 2~. +.-. Z - -2]



where

rla ix " Xl) 2 + - 2 Z2 (3a)

k = 2YiT /x (3b)

X = wavelength

V = voltage across center of slot

Consequently, the total electric field strength from an

array of such slots is given by the following equations:

o k (Y - Vian) ) cos (k )zi[O r rland

V exp (-1kr1 a) 21 (4a)"X n• [IanXln'+ l-

V1 0 (4b)

Cos (k (r 1 rl an) 1la ) - cos (k .) (xI - xlan) (4c)
•L~~ ~~~ ý,J• rCT -jkr

z i= I_ ' an r X 2 +
•,~~ ~ I•~l-Xan) I :

where

r X 2 2 + 2 (5)rlan = X lan) + (Yl -Ylan) +1I 5

The summation is over all slots in the array. In the
reference posit.ion of the planar array, its x1 , YI, Zl axes are
parallel to the x, y, z axes of the cone but the origin of the
x1, lY' zl coordinate system is located at z = z0 in the x, y, z
coordinate system. The position of the array relative to its
reference position is described in terms of three Eulerian
angles, e so ý , and i, as illustrated in Figure 7. The beam-
pointing direction is along the positive zI axis. In the x, y, z
coordinate system, the beam-pointing direction Op *p is related
to the two Eulerian angles s, s O by the relations
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Z, 1I

yjj
x X1

z

ZI,

X1

ZI yj

X1 1

Figure 7, IIlustreii,)n of fuierhsn vnges
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p s

Tr

In addition, the polarization of the far field depends on ýs ,

the third Eulerian angle. For example, if a vertically polarized

beam is desired in the direction ep, 4p then 1)s must be either

or ; if a hcri',ontal.y polarized beam is desired •s must be

either 0 or v.

The coordinates of the xi, Y1 1 z, system are related to the

coordinates of the x, y, z system through the transformation

x (cos •s cos s - cos s sin s sin )x

+ (Cos sill + cos 0 cos s sin •s) y+ c s ssi s s s

+ sin ýs sin %s (z - zO) (6a)

Yl - (sin ýs cos ýs + coses sin s Cos •s) x

-. (-sin is sin ýs + cos s Cos ýs Cos ýs) y

+ Cos 3 s sin es (z - zO) (6b)

zI sin es sin s x - sin Gs cos s y

+ cos 5 s (z- z0 ) (6c)
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2.1,3 Equivalent Sources on Cone

The surface on which the calculation of electric field

strength is desired is the conical surface, for which the x, y, z

coordinates are expressible in spherical coordinates as

x = r sin 60 cos

y = r sin es sin

z = r cos 60

where e0 is the cone angle measured from the positive z-axis.
Therefore, on the conical surface, the xI, yI, zl coordinates are

given by

x= r cos iPs sin c0 Cos (0 -

+ cos es sin y s sin 60 sin (4- 6S)

+ sin Ls sin es cos e0- z0 sin @s sin os (7a)

Sr I -sin ýs sin 80 cos -

+ Cos Cos ýS sin 80 sin (-s)

+ cos 4s sin 0 cos 00 -z 0 co s sin 0s (7b)s s

Z= r I-sin 0s sin 60 sin (0 - s) + Cos Os cos 0

- cos os (7c)
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If these expressions are used for the values of x1 , YI' Zi

in Equations (4) and (5), then the values of Exl,. EyI, and Ezl

can be evaluated on the cone. The x, y, and z components of E
can also be obtained from the x,, yI, zl components using the

following equations.

EX = (cos 'ps cos s - cos 0s sins sin s) EX1

+ sin es sin 0s Ezl (8a)

E = (cos 's sin 0s + cos Os cos Os sin s) EX1

- sin 8s cos 0s E zl (8b)

E sin O sin Es + cos e E (8c)z s Exl s Z1

The equivalent magnetic source currents that must be set up on
the conducting conical surface to provide the same external fields
and, hence, the same pattern are given by

{=x n- x~ (9)

When this operation is performed, the resulting radial and

circumferential magnetic current densities on the cone are found

to be

Mr Ey cos 4 - Ex sin c (10a)

M - CE sin 0o cos 0 + E sin 80 sin + E cos O (10b)
0x 0y o
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The far-field radiation pattern from these acurces will be the

same as that of the original planar array.

In any practical situation, tile required magnetic current
density can only be approximated by discrete magnetic sources
distributed over the conical surface. Consequently, the pattern

that will result from the placement of discrete magnetic sources

will deviate from the desired pattern. The seriousness of this

deviation will depeiid on the spacing of the sources on the

conical surface. This spacing should be as large as possible to

minimize the number of sources required.but will be limited by

the amount of allowable pattern deterioration.

2.1.4 Computer Program

A FORTRAN computer program has been written that implements

the equivalence principle synthesis technique. The program

approximates the pattern of a reference planar array of slot

radiators by replacing the planar array by an approximate

equivalent array of elements on a conducting cone. The elements

on the cone are crossed slots whose arms can be independently

excited. The radiation pattern of each slot is represented by

a simple approximate expression that does not include tip

diffraction. As presently implemented, the program accomplishes J

the following operations:

1. It positions the elements on the conical surface
according to a specified algorithm. Presently the
elements are equi-spaced on circumferential rings, with

each ring separoted by a selectable distance along the
cone generatrix. The number of elements on each ring
is selected according to the following rule: In the
ring nearest the tip of the cone the number of elements
is selected so that the spacing just exceeds a specified
minimum allowable fraction of a wavelength. The same
number of elements is used in succeeding rings until the
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circumferential spacing exceeds some maximum allowable
fraction of a wavelength. When this condition occurs,
more elements are added until the spacing just exceeds
the minimum allowable spacing, and so on. In addition,
the positions in adjacent rings are rotated by one-half
the element spacing to lessen any tendency to form
grating lobes in azimuth.

2. At the locations of the elements on the conical surface,
the program computes the electric field produced by a
reference planar array of slots that fits within the
conical surface. This array provides the reference
pattern that is being synthesized. The pointing direction
and orientation of the planar array determine the beam
direction and the polarization.

Two options are available. In one, the entire cone is
excited forward of the plane containing the equivalent
planar array. In the second, only that portion of the
cone is excited that lies within a specified area of
the cone.

Monopulse difference excitations may also be obtained
in the E-plane or the H-plane.

3. It computes the pattern of the conical array. In
performing the computation it uses the electric fields
computed in 2. as the element excitations, and uses an
approximation for the patterns of the individual
radiators. The phase of the element excitations may
bo quantized if desired.

A listing of the program is given in Appendix A.

An auxiliary computer program has been written that allows

the study of the positioning of radiating elements on the cone

relative to the orientation of the reference array. A listing of

this program is given in Appendix B.
These programs were uscd in the design of an experimental

array and for the computation of its excitation and predicted

patterns as discussed in the next section.
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2.2 Pattern Calculations

The computer programs described in the preceding section

have been used as tools to study the equivalence principle syn-

thesis technique through the computation of various array patterns

using different reference planar arrays and different numbers and
spacings of slots on the conical surface. These patterns are

presented and discussed in this section. Several patterns are

included for which the full conical surface is excited. Other

patterns are included for which only a portion of the cone is
excited. This second condition corresponds to a practical case

in which those slots on the cone that would be weakly excited
are turned off completely (i.e., short-circuited). It also cor-

responds to the situation that exists for the experimental cone

to be described in Chapter Six. Patterns are also included that

illustrate the effects of three-bit phase quantization. Addi-
tional pattern calculations are compared with measurements in

Chapter Six.

The various calculated patterns are intended to simulate the

patterns of several reference planar arrays. These reference

arrays are illustrated along with their calculated E-plane and
H-plane patterns "n Figures 8 through 13. The patterns are cal-

culated using the patterns of slots in an infinite groundplane

and are therefore idealizations of the actual patterns that would
be obtained, especially in the far-out sidelobe regions.

The coordinate system used for calculated patterns of the

conical arrays is that shown in Figure 14. The desired beam

pointing angles are 8P, *p,. In all calculated and measured

patterns *p was set to zero. All patterns were calculated for
vertical, i.e., B-directed polarization at the peak of the beams.

The angular coordinate for E-plane patterns is e, while that for

H-plane patterns is j. The E-plane patterns are plotted as

functions of e - 8 The various parameters and areas of cone

excitations used in the calculations are summarized in Table 1.
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TABLE 1. SUMIARY OF PARAMETERS FOR CALCULATED PATTERNS

Ref. P~anar Array
-I s Element Spsacings on Cone

I ~~~~Dist. - - - --- - -1 from Slot Excited Number
Beam Position No. Cone Ring. Separation Senarati'n lejon of Phase ConeoAngle

Figure Pattern Op o iam. of Tin- Al ong, Ceneratrix in Azimuth of Ative fluanti- gngl

No. Type Deg. De~g. wvlths Slots 14viths 1lvl ths tlviths Cone Slt ation Degrees

15a E-planke s um1.2

b H-plan- sud 7 42 - I
c E-plarne diff 70 0 4.26 2. 12.2. 0.7 3,5 to .7 223 None 170

d H-plane diff I___

16a E-planke sumn
b H-llne aum 30 I 0 4.26 ?4 12.29, 0.7 0.5 to 0.7 Fulln91

b H-plane sum 1 I 11 _ ] •. • . . ,-
S_______ __ __ __ _____ _____..___.. .. .... 7ul 121oNne 17

17a E-plne Ila
b H-nltin sum 30 0 4.26 4 12, 0.5 to . Plaar 45 None 170

H-plane sum 50 0 4.26 24 124 28 0.7 t.5 to 0.7 Full 219 3-bit 170b H-plane aumo42 4 ra 7

20a i-plane .e. Plan.ar
30 0 4.26' 24 12.23 0.7 0.5 to 0.2 array /.5 None 170b H-planIe sum _____projection _c__
50 s 30 6 21 4 112 2 0 .7 0 to 1 ar None 170

b1 E-plane sum arv ,

2.2a Ep:n s:um [I Planar

24a E-planke rum Pla -.-----.- ___ _____ naroetc
b H-plane so. . 50 0 3 (' 32 12,25 0. 7 o 0.7 array 35 None 170

c f-p.an. difff__ projectio__.

26ha E-plane sum ]II
b H-planke sum 50 10 6 32 1123 ). 5 1.0 to 1.4 Full 153 None 170

27a E-plane sum ] Planar

b H-planke aum 50 0 3 66 32 1I.21 0.5 1.0 to 1 4 array 35 None 170

23a 4&planke sum Planar
b -ln ot 50 0 3 66 32 11 W',' 0.5 1. to1' rray 35 None 160.75

*.9Planar ane aut Planar
b U-planke aumt 0 6!o. 32 13 0. 5 1.0 to I.A~ proi 35c no 697

______ __________-o~ection ~ I 197

Vis f-plane so [i 3.)1]6
b H-plane sum 50 p 3.66 1 -on 0 5 1.0 to 1.4 diameter+ 35 None 169.75

"31a I -plane sum 606

- - .... .. .-_ - '- .. . '_ tr_

b H-plane rom 5u 0 3 11 3 93 5 1 0 t dia

32a 13-planke sum416

t, H-planke s um 50 0 3 66 32 12.27 01.5 f 1.0, to 1 .4 diaet ir+ 37 Nions 169.75

33a 13-planke sum / 33Nn6197
b H-plane sum 7 . 0 3 6ý 32 11 91 0'r.1. to 1.4 diamneter+ 7 Nne 197

34a f-plane sum Ii.3 7
79.751 3 66 I32 1. - 0., to ' ism oe 197

6 H-plane mum 2__ 0.2 14 I'd 25.r jl /1 Non 169.75

*Planar at-ray had 
tapered distribution

f(e) - 0,5 +' [I1' (f2)2_ _ _ _ _ _ _ _ _ _-

sfaxctted ragion of cone corresponds tc the projecuion of a 1. 6. diameter circle onto nonke.
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.L - 0.5 ?.I OX - 0.7 X.
DY " 0.7 X,
RAN -'2.13 h.

lU

Figure 6. Quadrant of 24 element plenar arra
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L- 0.5 ?.
DX - 0.497X

DY - 0.600 ,-

RAN "2.13X

oax
Figure 10. Quadrant of 40 element planar array
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Figure 11. Calculated patterns of 40 element planar slot array.
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Figure 12. Quadrant of 32 element planar array.
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Figure 13. Calculated patterns of 32 element planar slot array.
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Figure 14. Cocrdinste system for patterns.
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The radiating elements on the cone are positioned in

accordance with the rule given in Section 2.1.4. The distance
from the cone tip to the first ring of slots is in all cases 0.7
wavelengths and the separation of adjacent rings was varied.

Figures 15 through 20 relate to the 24-slot planar array, and are
for a cone half angle of 10 deg.

Figures 15a and b show the calculated E-plane and H-plane

patterns for the cone using all the available slots to approximate
the required distribution. It is seen that the main beams agree
well with those of the reference planar array, but that the side-
lobes of the conical array patterns are higher in the E-plane
and the general sidelobe structure differs from that of the ref-

erence patterns. This difference is attributable to two main
factors. First, the cone excitation consists of discrete slot

fields rather than the continuous excitation dictated by the
equivalence principle. The use of more slots spaced more closely
on the cone should more nearly approximate the continuous dis-
tribution and improve agreement between conical array patterns
and planar array patterns. However, since the design of an
experimental array was the goal, and the number of slots that
could be implemented was limited, no extensive set of pattern
calculations was made for more closely packed slots. However,
one such calculation was done for a slightly different cone angle
(00 - 169.750); (see Figure 34). A marked improvement of the
conical pattern was observed for that case. The second reason

that the calculated conical array patterns do not agree with the
calculated patterns of the reference planar array in sidelobe
detail is that approximate radiation patterns were used for the
slots on the cone. These slot patterns do not include tip
diffraction effects.* These two conditions are common to all

calculated conical array patterns.

*The discontinuities in the patterns result from the use of the

approximate element patterns which have sharp cutoffs in certain
cuts.
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Figure 15. Calculated patterns of 100 conical slot array; fuh excitation (Op 700).
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Figure 16. Calculated patterns of 100 mcnial sot arra; full excitation (9p- 80W)
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Figure 17. Calculated patterns of 100 conical slot array; 4 elememts (1p0 o0 ).
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F Igure I18. Locations of excited slots for the patterns
of Figures 17, 20 end 271.
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Figure 19. Calculated patterns of 100 conical slot array; full excitation, 3 bit phase qunization. (ep 800)
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Figures 15c and 15d show E-plane and H-vl.ne difference

patterns, respectively, for Ohe saue arr&y as in Figures 15a and b.

Their excitations on the cone were obtained yv exciting the

reference planar array to produce E-rlane and H-olane difference

patterns and determining the resu]ting tangetial coamonents of E

at the conical surface. The difference patterns are shown

normalized to their own peaks. The "eak of tie V.-plane difference

patcerl. is actvallv 3.47 dB below the Peak rf the sum pattern.

Its "null" is therefore approximately 21.5 dE below the sum neak.

Actually it appears that the true null may be slightly disolaced

From e and was missed due to the one-degree step size used in

the computations. The peak of the H-plane difference pattern

is 3.58 dB below the peak of the sum pattern and the null in the

desired polarization is a true null. The cross m.larization in

the null is down approximately 38 dB. Thus, the synthesis

technique appears to permit generation of difference patterns

without serious cross polarization problems, at least for the
case where the null lies in a plane with azimuthal symmetry.
Figures 16a and b illustrate the sum pattern for the same

situation as in Figures 15a and b except that the beam is posi-

tioned at ep = 800. The characteristics are very similar to

those of Figures 15a and b. Figures 17a and b are for a case

similar to Figures 16a and b except that only 45 slots within

the direct projected area of the reference planar array were

excited. Figure 18 shows the excited slots on the developed

cone. The E-plane pattern is less syimetrical especially in

the near-in lobes than for the fully excited cone. The H-plane

sidelobes are raised somewhat, These effects result because the

required excitation is truncated.

Figures 19a and b show the effect of 3-bit phase quantiza-

tion on the pattern of a fully excited cone. Some deterioration

of the sidelobe structure is evident. Figures 20a and b show
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the effect of limiting the excited slots to the projection of

the equivalent planar array and using 3-bit phase quantization.

A further loss of detail of sidelobe structure is evident.

Figures 21a and b illustrate the effect of aperture tapering on

the patterns. A taper of the following form was placed on the

aperture distribution of the reference planar array.

Sf(p) 0.5 + 1 )2

where a is the array radius and p is the distance from the array

center. The main effect appears to be a lowering of the near-in

sidelobes of the H-plane pattern and the far out sidelobes of

both patterns.

Figures 22a and b illustrate patterns computed for a beam

position at &p - 50 degrees and a reference planar array of

40 elements. The excited region of the cone is once again

restricted to the projected area of the planar array. The spacing

of slots on the cone is illustrated in Figure 23. Figures 24, 26,

and 27 are also for a beam at ep = 50 degrees using a 32-slot

reference planar array and various slot spacings on the 10 degree

half-angle cone. Full cone excitation and limited cone excitations

are used as illustrated in Table 1. Figure 25 shows the slot

arrangement on a developed cone for the patterns of Figure 24.

The peak of the difference pattern in Figure 24c is 1.93 dB below

the sum pattern and the null, which is shifted by one degree from

the desired location, is 23 dB down. Once again the actual
location of the null was probably missed because of the one-degree

step size used in the calculations.
The patterns in Figures 28 through 34 are for a half cone

angle of 10.250. Thi3 angle corresponds more closely to that of

the experimental cone discussed in Chapter Six. The antennas
whose patterns are shown in these figures have several different

175

ti i I I.I . .. ..i 1....



I0

-10

-15

-20

0
w

30

w

~-35
-40

-50

-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 s0 60 70 s0 90

e - Op, DEOGRES
a) E-plane

-s

-10

IsI
-20I

-25I

-35

40-

-90 -40 -70 '40 -50 -40 -30 70 -10 0 10 20 30 40 so so 70 so 90

PSI. OEGAGSU

b) H-plan.

Figure 21. Calculated patterns of 100 conical slot array; 45 elements, tapered distribution (OP 6 00).
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Figure 22. Calculated pattern of 100 conical slot array; 35 elements, modified spacing (Op 500).
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Figure 23. Location of excited slots for the patterns
of Figures 22 and 27.
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F igure 25. Locations of excited slots for the patterns
of Figure 24.
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arrangements of excited elements. Figure 32 also has a somewhat
different position of the reference planar array that determines

the slot excitations. The arrangements of slots on the developed

cones for the patterns in Figures 28 through 34 are shown in
Figures 35, 36 and 37. The slot arrangement finally selected

for the experimental array is that of Figure 37. This arrange-

ment was selected as a compromise between number of slots and

the quality of the patterns.

+ + + +

Figure 35. Locations of excited slots for the patterns
of F igures 28and 29.
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Figure 36. Locations of excited dots for the patterns
of Figure 30.
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Figure 37. Locations of excied dots for the patimh
of Figures 31, 32 end 33.
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APPENDIX A

In this Appendix the first computer program described in

Section 2.1.4 is listed. The program is CONEZ and a complete

Fortran listing is given as well as a list of input variables,

data formats, and output variables (Tables I, II and III).
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C THIS PROGRAM TAK(ES PLANAR ARRAY AND COMPUTES ITS NEAP FIELD ON

C A CONICAL SURFACE SURROUNDING THE ARRAY. THIS FIELD IS THEN USED

C AS AN EQUIVALENT SOURCE ON A COND'UCTING CONE: TO REPRODUCE THC

C ARRAY PATTERN. THE F-CUIVALFNMT SOURCE IS APPROXIMATE, S1Y

C SHORT SLOTS ON THr Ccnr EXCITED IN PROPORTION TO THU

C REQUIRED EGU! VALEN-T FOUkCA: AT TtiE SLOT LOCAT TEN. APPROXIM*ATE

C ELEMENT PATTERNS AFrF USED FCA THE SLOTS*

C

C MAIN FPROERAM

C THE MAIN PkOGRAM CONTROLF FLOW9 REAVS DATA, AND CALLS VARIOUS

C SUBROUTINFS

COMM~ON/OUTFUT/ EPDF 'oc ) ,rTrD"F(40C) 1
COMMON/ALL/NSLOT,PI 4 ID2¼THFTA OIVLTH

COMMON/PATAUI/NPSIIT Z(400)qP~2(400),PSI(400)*TA0
C(-MMON/PELCDN/PC(2CflC),R(2O0O) RMAY

CDMM0N/TAU/PHI5~qThE. TAS

COvMO N /ARFST I :0 qRN
COMMON/LAe-T/ZTF5eTtPCOC-)
COMMON/ROT /ETPPt',ýl( 4 O) *F-'Lr ý(400)

CCmMON/f3LAi/r'tIIFqTHETAP
COMPLEX ER1 ,EPFIII

D OUnLE PRF C IS ION' D A T
I100 CALL. CLOCK(TIMrLDATF)

WRITE (f-qll)TIvL9,DATC

RAD (p,20)HET9 , kVLTflt \c'L"CUT

200 FOPMAT(2F1C.5sTý,)
CALL FLLOC

DO 400 NUmHER=1,NAUCUT
IF' (NUMOEF *GT. )W.I Tr*(.qltý)

p CALL TALICUT

Ir(N-Umf4Ep.C,T.1) GCV '0 3(0
CALL CONtDIS

300 CALL PATCcOM
RE AD (591, I)NC. 1NPS INDLXSYq! *LLY

12 FOQMAT(3159(FlC*'~)
CALL PLOT!
CALL CLT(CVS ,NELPI~f,,YYT1rCY

400 CONTINUEr

STOP

SUikrlL~TiNr ('LLrCC

C
C THIS SUP-ROUTTAE CC,''L'Tt.. Tý4r L.VCATI-INS OF FLE;ML\ýTS 0P. A CC~jE. THC

C ELCMENTS APRANr4D CN RIN~Gr W'ITH A21W'LJTý4AL SPACING CF H~rTVECN SOME

c MINI MUM VALUE* SPAZ~Ng A.N) SCMFV AX IMUM VALUE ~FPAVX* THE %UMG.E'ýI

C OF ELEMENTS IN A CIVEN Qlkl 7c; r~~qlr, ý'Y Tý-TS CRITtvIONe TýL

C RAD~IAL FrACICG OF $. ý CIGkAED'.Ao YtI- IPUT' RFC.0lRrE ADC THE
C RADIU5r PF TfiE LARGEST 1oFtrrtCE ;LANAP AkRtY CrtNSi~l-Rr~9 kN,

C AND THF DISTANCE FP0.1 Toor CCNE TTF- TO TtE rlIT
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C P ING' OF rLCMENTý:, AflJACE.NT A INGS Ard* SHIFTED HYv ONE I-ALF THF

C ELFwrNT SEPARATION TCr ROVIDC A TPIANGULAR LATTICE.
C

C(IMON/ALL/NSLCTPIPYC?,THFTAnWVLTI-.
COMMON/FELCON/rnc(2crjo),okc2oo0),RMlAX

C 0 m tAC NI/ P E S 7 / Z 0 9 R N
P1=4*.ATAN(1. )

P AD = l/i Pin.

R EA D ( 95 L0 ) S PA 7 VX S PA .'f!N
SE'PMX = SPAZvY*WVLTH
SF PMYK SrAZMN@WVLTH-

READ (5,500) RN ,HAV1MNIN, D IKA

WRITE.C6,'00) SEPMINqREPmAX
4.0n Ff~RMAT C//qlx,29HMIN!MU? A7:NIvJTHAL 5!EPAPATI0N=vrl0 *5s7H- INCHES*/

+IXj2qflMAVIMJUM AZIM~UTHsAL SEPAkAT ICN=oFl0.5ol7H INCHEF,*//)
WRITE(69,(0Ot) ORAL,

600 F()RMAT(lJ(,33HRING Sr.PARATI()N' ALONG CFNrRATRIX=9Fl0.5,7H INCHE.S,//)
T C T4E TAO *RPAD

500 rORM~AT(ýrjoE)

SINO=SIN(TC)
COSO :COSi~TO)
Z U -RN/S I NO,
RMAX=(-RN.(l.,S1NO)/SIN0-2..WVLThi)/,r)SC

RADI=RADMIN
NSLT=INT(2..PI*RADI.SINi1/(SEýMIN))

IF (NSLT.EC.0 3 NSLT: 1

00 100 N=191000

IF (RADl.C-ToPPMAX) C0, TO 300
01 RAV*2.. PJ* SIN C! /FLOAT CNISL T)

IF (SEFI.GE.SEF'MAX) tf!ýLT=1NT(2.*PI*RAD1,SIN0f(SEFMIN) 3

Ir(NSLTerQ.0) NISLTl
DELP'HI=2l.*FI/FLOAT(NSLT)

123 F0QMAT(1YI3,lkFl0o4
M421* (-1). 'N
00 100 L=19NSLT

PC T)=RADI

P0(I)=rLOAT CL-i) 'DE L1HI
IF (m.rco.2) P0OCV=F1 0(I )#VLr-t-i/2.

200 CONTINUE
P AD:P A~l. DR AD

*100 CONTINUE

300 NSLOT=1
RETURN
EN!)

SU~iROUTINr TAUCUT
C

C THIS SUVROUT'INr SETS U'P THFE COORDINATE SYSTEM FOR PATTERN CALCULA-

C TION. THE ANGLE TAU IS THE ANGLE OF THE CUT (TAU=O CORRESPONDS TO

C A CUT THROUGH THE CONIC AXIS) . PST IS THE ANGULAR VARIABLE OF THE

C CUIT. Ttir ROUTINE usrS THE PEAM PCINTING DIRECTIONS PHIP ANO

C THFTAP. THC OUTPUT IS ARRAYS or ANnLES PSIfI)*TCI)qANO P2(1)9

COvMON PA TAU/PsjP I 24400) Opp (4 00) 1 PSI (400) *TAD
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CovMON/TAu/PliIrT~rT4S

COvMMN /PEAM/PHi r Ti-i TAP
RIrAD(59100)TADPL.PMoSTPt'IPTHETAP

i00 ropVAT (6iF1.s)
WRITE 6o2 00) THE TAP, Pk4H

;>o oFop MAT (I X 42(HPr INT I NC DIRECT !ON: THETA= 9F7* 29 5X iIIOLGPEES9 9 394.MPH
+I=,F7.2,3Ys7HCE0REEs,//)
WR ITC( 6* 19)

19 FOQmAT(//33H TAU CUT PSI LO PSI HI STrP9/1XvF@.3,2r9.3,r7.3)
wRITr(6,'0)TAD9PL~rHqsT

20 rOMTl972 )t72oXor7.2,3),F7.2)
PI=4.*ATAN(1*)

RA= 180./PI
TA=TAO)/RA

TH*4T AS =T HETAP

PHI' SZPHIP#' 9 0.

PHIR=FPH I P RA

THE T AR=Ti ETA S/R A

COSPMI=Cos(PHIP)
SIN P141SI N(PM IR)
SINTH=SIN (TtiETAP)
C8S TH= CO S (THE TAP)
19=0

SINTA=SIN (TA)
COSTA=COS (TA)

PS IDPL
260 I9 =19 +

PYR=PSI U/PA

PSI (I9)%PSIR
SINP=SIN(PSIR)
COSP=COS(PSIR )

WN=SINP*COSTA*COSTH*COSP.SIfKTH
XN=WN.COSPHI-S INP S INTA. SINPHI

VN=WN.SlNrHI*SINP*SINTA.COSr'Hi
IF(YN.EDO..AND.YN.ECG*)XN=1.OE-18

ZN=COSP*COSTH-S INP *COSTA *STNTH

XY=SGRT(XN*.2*YN'.2)

T2(19)=ATANP(XY,ZN)
P2(19)=ATAN2( YNoXN)
PS D=PS! D*ST
ir(PSID.LE.PH)Gn TO ~260
NP S121 9
RETURN
END
SUPROUTINE CONDIS

C

-IC THIS SUBROUTINE COMPUTES THE RADIAL A*ND CIRCUMFERENTIAL ELECTRtIC
C FIELDS AT SELrCTED POINTS ON A CONICAL SURFACE* THE FIELDS COME FROM A
C PLANAR SLOT ARRAY LOCATED WITHIN THE CONICAL SURFACE* THE ARRAY
C ORIENTATION IS ARBITRARY* THE INPUTS REQUIRED ARE THE RADIUS OF THE

C CONE, THE SLOT SPACING IN THE PLANAR ARRAY* DX*DY*TME WAVCLENGTme
C WVLTH, THE CONE ANGLC, THETAO, AND THr RADIUS Or THE PLANAR ARRAYVRANO
C AND THE RA DIUS Or TH4E PROJECTED ACT'IVE PORTION OF THE CONE* RAL.
C THE SLOTS ON THE ARRAY ARE PARALLEL TO THE Y-AXIS OF THE ARRAY*

C THE POLARIZATION IS CONTROLLED PY P515. 4PSISx-9O CORRESPONDS TO
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C VERTICAL (THETA) POLARIZATION.)
C THE PLANAR ARRAY TAPER, FNA(R), MUST SE SPECcxIEDe
C THE PHASE MAY BE QUANTIZED TO N VIlTS sY SETTING MOPH EQUAL TO N.
C MQPHz0 GIVES NO QUANTIZATION* THE ACTIVE PORTION 0r THC ARRAY IS
C CONTROLLED BY ILIM. IF ILIm=0, ALL SLOTS ARE EXCITED ON THE CONE THAT
C DO NOT LIE BE-HIND THE PLANE OF THE ECUIVALENT PLANAR ARRAY. IF ILIM>0
C ONLY THOSE SLOTS ARE EXCITEL. THAT L-IE WITHTIN THE PROJCCTION 0F THE
C PLANAR ARRAY OUTLINE OiNTO THlE CONICAL SURFACE.
C SUM OR DIFFERENCE rAllrFNR MAY LE OBTAINCO VY ADJUSTING PONO.e
C lmONOO0 GIVES SUM; MONC~l GIVES H-PLANE DIFFERENCES mONOz2 GIVES
c r-PLANE DIFFERENCE.)

C
C PRCLIMINARY COMPUTATIONS AN SFTUP 07 INITIAL VALUES

COMmON/A LL/NSLOT ,PI FIDP ,THE TAOW VL TH

COMMON/PEL CON/PO (20 00) R (20 00) ,R AX
COMMON/PATCON/rRl ;'000) ,EPHI 1(2000)
COMMON/RE ST/Z09RN

COMMON /TAU/PH IS, TH-ETAS

COMMON/LAST/ZTESTU'0CO)
COMIPLrx EXPEZ2.FC. zim.7y0,EzoExEYE?,EPHIERErEHI1,ERI

REAL Lt MAGRe MAGPHI
C SPECIF Y T~r APERTURE TAPER rNA".).

FNA(X)=1
R AD=PI/i Rit?
READ (5,100)DX, DYqPSIS. ANALMONO,9MQFPH.ILIM

100 FORAT((ir1.3931'5)
WIRITF (C9.700) RNRAN

700 FORMAT(//#1X92flHMAX ItWL PLAN~Ak AkRAY P4AOIUS:,F1O.5v7H INCHESO/9
*1XP7HACTUAL PLANAR APRAY PA[rIU)S?,r10.5,?H INCIIES9//)

WRITE(f9900) DX, DY
qO0 FORMAT1IY929MFLANAR 8PRAY CLEMt:NT SPACIN6:,/91Xq3HDX=,

*710.5912H IPkCHE59 c~y=qrl10.-97H IN.CmESq//)
LWR I?(69F00) WVLTH

hOfl FORMAT (1X.11HWAVtLENý;TH4=,F1 .5,:7M INCMEss//)
DFLTP:=Z.*PI/2...MCFHl

TU=TpiETAflAHAD
rHS:PHIS .RAf)
TO-TS=THE TAS OQAD

PSS=P5IS*RAD
L.IRITFE(h,11C)THETA0

110 rOPMATc/1xq19HCO0lr ANGLE, Tt4ETA0=1KF6i.2.qbr4 DECkE:E99//3

WRITE(69140)
140 FOPRMAT(IW949HMPS1-SUHi-S-OEC PHJIJIt('S-DEG TIIETA-SU8-SODEG/)

WRITE (f 1!50 )PIS, 1% THE TArS
150 rORMOAT EF13.2,'.X.713.Z,'.XF152,"//)

IF(MOO~rc.3 ýQITFt69145)
14f) 7ORvAT(1X,1IHSUM rATTCPN9//)

IF(MONO.EEn.1) WRITEU,1-'35)

155 F0PwAT(1X,2CHH-PLAV.L DIFPHMENCE PATTrRN*//)
IF(M0NO.%ECle;R WR ITr ".q 1453

1E,5 F0RMAT(1X,?)6HlV-PLANE DIrFERENCE PATTERN9//)
Ir'(VGPHGT,0) .iRITrt696ati) A*':PH

6CC rOQMATfl~s19HPHASE OUANTIZFC AT qI~iq5H 7Ile.,//3

190 r0RMAT(IXIsHrULL CCNE EXCITrD..,//
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ir(ILIM.GT.0) WRITE(69195) RAL
195 FORMAT(IX94OHRADJUS OF PROJECTED ACTIVE AREA 0F CONE=*F1g*597H INC

WRITE(69160)
160 FORMAT (IXSHSLOT NO*93X ,SHRAL) SLOT92X98HANG SLOT93X94HEPH195X ,5HPH

#A SE95X #214CR 9 7X o5HPIIASE)
URI TE (6, 170)

170 FORMAT (13X,6HINCHES,5X,3HDEC,,7X,5MHMAG,6X,3HDEG,6X,3HMAG,7X,3HDEG,/

L=WVLTH/2.
Ala3(1 o-L/DY) /2.

A2:C1 .*L/DY)/2.

S IN=S IN ITo)
COSO=COS (TO)
SItJPSzSIN(PSS)

COSPSCCOS (PSS 3
SINTS=SIN (THTS)

COSTS=COS(THTS)

SIPt4S=SYN (PHS)
COPHS=COS (PHS)
ROASRPMAX*SINO

M2 =2 *M1

STH =SINfTf1ETAO.RAD)
CTH = COS(THETAO'RAD)
RRI = COS(PHISORAD)*COS(PSIS*RAD)
*-SIN4PHI'S.RAD).COS(THETAS.qAD).SIN(O-SIS.RAO))
RR2 = SINCPHIS*RAD)*COS(PSIS*RAD)

*.COS(PI4IS.RAD)'COS(THETAS'RAD)'SIN(FSIS.RAD)
RR3 = -C0S(PHIS*RAD )*SINfPSJS'RAD)
o-IN (PHIS 'RAD) .COS( THE TAS*PAD) .CCS IPSIS ORAD)

MRR4 z -SIN(PHIS*RAO )*SIN(PSIS.RAO)

*.COS(PHIS.RAD3.COS(THETAS.(AD)*ccs(F'siS.qRAD)
G3 a-Zo

RXI = SIN(THETAS*RAD) 'SIN(PSIS*RAO)
RYl a SIN (THETAS*RAD).COSCPSIS*RAD)

DO 10 NxlNSLOT

C CONDITIONAL STATEMENTS TO REMOVE SELECTED SLOTS*

C Ir(NeE~o.5.OR.N.o.~91.OR.N.EQ.1353)G0 TO 10

C IF(N.EQ.1*0.*OR.(N*rT.144.ANC.NoLT.V56)3 GO TO 10

C Ir4N.oEQ15R.OR.NeE~o.69) GO TO 10

C IFIN*GT.*'s.AND@N*LT*101) GO TO 10
ERI(N) a CMPLX(O.9O.)

CPHI1IN) a CMPLX(0.,O.I
01 a R(N)*STH*COS(POCN))
025a PfN)*STH*SIN(PO(N3)

04 a ft(N)*CTH

X3P = 01*RRI 4 G2*RR2 # IOSO's).RX1

Y3P V 01*RR3 4 Q2oRR'. * fQ3*n's-eRY1
R4OXY a SGRTIX3P**2 # Y3P'.2)
IF I;LIM*GT&0oANDoRN0XY *GT. RAL) GO TO Oq

ANaN
RSLOTzR (N)
PH12NPO IN)
PHI DzPHI2/ftAD
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SINO=SIN (PHI2-PHS)
COSO=COS (PH12-PHS)
COPH 2 =C OS (PHI2)
SIPH12=SIN(PH12)
X2=RSLOT.(SINO.(COSPS.COSD.COSTS.SINPS*srND).SINF's.SINTS*COSO)

*-ZO .SINFS*SIW~TS
Y2=RSLOT.(SINO. (-SI NPS.COSO.COSTS.COSPS*SIND),COSPS*SINTS.COSO)
*-ZO.COSPS*SINTS
Z2=RSLOT.(-SINTS*SINO.SIND.COSTS*COSO)-ZO.COSTS
*ZTEST(N)=Z2
IF(Z2.LT.0.) GO TO 10

C
C COMPUTATION OF FIELD DUE TO PLANAR ARRAY
C

EX2=C"PL X(0. ,0.)
E?2=CMPLX (0. 0.)

DO 30 M=lM2
AM=M-M
Xla(AM*..S) DX
Et=SQRT(RAN.*2-((Am*!.5).DX)**2)/DY-.0001

DO 30 J~1,N2
BN=J- INT (S*.Al)-1

A NGLE =ATAN2 (ylqXl)
R1=SGRT((Y2-Xl)..2.(Y2-Yl)..2.Z2**2)
C=COS(PI.L*(Y2-Y1)/(Rl.UVLTH))-COSEPI.L/WVLTH)
RHO40SQRT(XI..2*Yl..2)
V~rNA(RHO)
IP(MONO.FG.2.AND.ANGESNLC).LT.PI) ) V:-
IF'MONO.FC.1.AND.ASANGLC.LT *L. P/) V:-V
R'.=SGPT((X2-Xl)*.20?2*.2)
FX:V*Z2*C/(PT .R4**2)
F:CMPLX( 0,9-ri)

G=CMPL)(t0 . 9G1
ZIM=CMPLX(C.9-2.trI.R1/WVLTH)
rxo=r*CCXP(ZIhl)

LZO=G*CEYP(ZIM)
CXPFrX2.EitO

30 EZ=E?2*E?0
C
C TRANSFORM FUILD COMPONENTS TO COORDINATE. SYSTCM OF CONE.
C

EXEX?.(COSPS.COPHS-COSTS.srPHS.SINPS)GEZ2*SINTS*SIPHS
CY:CX2.(COSPS.SJP.4SCOSTS.CCPHS.SINPS)-EZ2.&SINTS.COPHS
EZ=EX.~.SINfS*SINPS*FZ2.COSTS

C
C RADIAL AND CIRCUMFERENTIAL COMPO~NENTS
C

CRAErX.COPH12.CY.STPHT2).SINO.EZ.COSO
CPHI:.CXaeSIP4 12 .1Ye COf)HIIl
JF(MQPH9GT*0) GO TO AO
CR1 (N) 3CR
EPitIl N)zCPhI

199



80 MArGR=CABS(ER)
MAGPHI=CABS(rp$i)
!V(MAGRsNEs0o) GO TO 4.0
PHAP=O *

GO TO 50
4.0 PHAR=ATAN2(AIMAGlER )qRCALfER))
50 IF(MAGPHI*NEeOe) GO TO 60

PHAPHI =0.
GO TO 65

60 PHAPHI=ATAN2(AIMAG(EFHI),REAL(CPHII)
65 IF(MQPH.FZQ90) GO To 70

PF4AR=-OELTP.AINT((PI-PHAR)/DELTP*0.5)
PHAPHI=-DCLTP.AINT((PI-PHAPHI)/DELTP.0.5)
ERI(N)=CMPLY(MAGR.COS(PHAR),MAGR*STN(PHAR))
EPHIX (N) MCMPLX 1 MAGP HI.COS (PH4APHI) ,MA GPHI*S IN IPHAPHI))

70 PHAPHOCPHAPHI/RAD
PHARD=PHAR/RAD
WRITE (69180) N9 RSLOTv PHID, P'AGPHI9 PHAPHD, MAGRO PHARD

ISO CONMTINUE 3oF.9XF.22*I.4F,9XEI.ig
109 CONTINUEX ',Xr.3,XF.,XEO4rS22,I.,S
10 CONTINUE

RE.TURN
END
SUPROUTINE PATCOM

C
C THIS SUBROUTINE COMPUTES THE RADIATION PATTERN OF SLOTS ON CONE*
C IT USES APPROXIMATE ELEMENT PATTERNS9IT USFS THE SLOT POSITIONS
C COMPUTED IN ELLOC9 THE FIELD POSITIONS COMPUTED IN TAUCUT, AND
C THE EXCITATIONS COMPUTED IN CONDIS.
C

COMMON/OUTPUT/CPDB('.00) ,ETDe(40D)
COMNONIALLINSLOTPI ,PI02,THETA0,WVLTH
COMMON/PA TAUj'NPSI , 2 (400 1 P2 (4 001, PSI(4'00),T AD
COMMON/PELCON/P0(2000),R(2000),RkMAX
COMMON/PATCON/CR1(2000),EP~l(2000)
COMMON /LASTIZTEST (2000 I
COMMON/ROT/CTPPOS(4 00) ,CPPPDS(400t
COMMON/bEAM/PHIP, TIETAP
DIMENStON EPM(400) ,CTM(4O0)
COMPLEX EPOETO.EP, CTCOC7,ZlMER1,CPHIIS
COMPLEX ETPP1400)*EPpPP4001
RADUPI/I1P0.
P102 * P1/2.
TOxT HETAO&R& D
PHY x PHIP&RAD # P102
PHP a PHIP*NAD
THT a THETAP&MAD
IMP a THETAP*RAD

PST a TAD*PAD - P102
TAW a TAD*RAD
SINOuSSIN(O$
COSOuCOS ITOl

C WRITC(691101
ISO rVR$MAT(3U,7I4PSI DEG,9X,5giC-Pl.1 ,'.K,~sHE-PHI D0q13Xs7ME-Tl4rTAqllxq1o

oHE-THETA 00,/1
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DO 100 J=1*NPSI
SINT=SIN(T2(J))
COSTzCOSCT2(J))
EP=(0*909)
ETz(O.90.)
D0 90 1=19NSLOT

IF(2TEST(1)*LT.o.) GO TO 90
SINP=SIN(P2(J)-PO( I))
COSP=COS(P2(J)-P0( I))
TEST:-SINT.COSO.COSP.COST*SINO
IF (TESY.LT*O*)SW=Oe

C COMPUTATION OF APPROXIMATE ELEMENT PATTERN
ZNUM=SINT .S!NP
DEN=SINO*COST-SJNT' COSO'COSF
PHJ=A6S(ATAN2f?NUMOEN))
SIN1zSQRT(ZNUP**2*DEN*.2)
ZK AS INu2., PI'R (I)'S INO oSIN/I.WVLTH
ZNUZS5ooZKASXN/a'..,3e3?5
PHI 0:RAO. (90. .24.8. XP(-. 0179' ZKASIN) )
EPRzl9/(lo.(PHJlPHJO)*?NU)
SzRE I) .2. 'Ple(SINT. SINO .COSP.COST.COSO).Z IM/W VLTH
COEruClEXP (S)
EPO=(EPHI1(I).(COST*SINO.COSP-COSO.SJNT).CPR-SW.ERI(I).COSToSINPI.

icoEr
ETO=(EPHI1(I.SINO.SINrerFR.swoERIu).COSP)'CO~r

C CONTINUATION 0r SUMMATION
EP=EP#EPO
CT=ET*ETO

90 CONTINUE
CPM (J) UCABS 4EP$
ETMIJ)wCASS( CT)

PS10. PSI(J)/RAO
C TRANSFORM TO COMPONENTS, CTPP(i)tPCRPCNODICULAR TO PLANC OF CUT, AND
C EPPPfJ)9 PARALLEL TO PLANE 0r CUT.

CALL TRNrRM (!TCP, CTPP(.J) ,EPPP'(J) ,TMPPMPTAW.T2(J) ,P2(J) ,PSI (Il))
PSI(~J) a PSID

120 rORMAT (1X973.2*AF2O.7)
100 CONTINUE

C NORMALizr PATTERNS AND CONVERT TO 00
CALL*DECYRL (!PPPCPPPoOETPPCPPORA00.NIPSI)

C 00 150 J c19NPSI
C 150 WRITr 4&,Ipo) PSI(J),CPMCJ),EPDB(J),ETM(J),CTDV(4(1

WRITE t&9200)
200 FORMAT (l///AX, 'PEI'.I2X,'CPPP' ,3%N,'cPPPDO5' ,1X9

1 fETPPss1!'XvfCTPPD80v//l
D0 300 J a lsNPSI
cpPPPj u CADSIEPPOIJ))
CYPPJ a CAPS(CTPP(JI))

300 WRITE t&91201 PSI(J),CPPPJEPPPDS(J),ETPPI.ETIPPD(IJI

SUPROUTINE TRNFRP~fr tCPirT3PCP3PTMPPNPTAUT2,P';.PSII

C
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C THIS SUBROUTINE TRANSFORMS THE THETA AND PHI COvPONE-NTS Or THwE FIELDS

C TO COMPONFNTS PERPENDICULAR TO AND PARALLEL TO THE PLANE OF THE CUT*

C THE COMPONENT PE.RPENDICULAR TC THE PLANF OF THE CUT IS ET3P.

C THr COMPONENT PARALLEL TO THEIF PLANE OF THEF CUT IS EP3P.

C
COMPLEX ETEPqET3PqEP3r9EX3r ,EY3PvEZ!P

C
DPH PHP - P2

CTHP COS(THP)

STHiP S IN IT H P

CTHA COS(T2)

STHA SIN(T2)
CDPH COS(DPH)
SDPH- STN(DPH-)

CTAU =COS(TAU)
STAU =SIN(TAU)
CPSI =COS('rSI)

SPSI =SIN (PST )

C
EX3P = T. (STHP*CTliA*CDPH-CTIlP.STHA)

1 + EP.(STHP*SDPt-')
EY3P =ET * I(CTHP*CT HA.CCcPt-STHPOSTHA ) eCTAJ-CTHA .SOPH.STAU)

I * EP.(CTHP.SDPH.CTAU*CI)PI4STAU)
EZ3P = -T.1CTHA*SDPýI.*CTAU.(CTHP*CTtIA.CEIPH.STHF.STHA) .STAU)

1 * EP'I CDPI-ICTAU-CTHP .SDFH*STAU)
C

LTP -EZ!P
Ep3P -EX'SP.SrsI 4y3,*ýs

C
RE TURN

C
C THIS SURROUT I NE NORMAL I ZS THr rFIrLDS TO THL LARGEST VALUr AND

C CONVERTS POWER LEVELS TnO D#S

C
DIMENSION AIN),t'IN),C(Nl9VIN)

CO'4PLf% AC
CM w 0.
DOC 100 1Ia I1*m

CP z AmAX14CP9VIl))
100 CONTINUE

DO 300 Izl9M

OI I)UCASSICfI)) i
C~mAOAXI ICM009I))

300 CONTINUE
D0 200 1 a I.~
Bill v 20oeAL(IOI0f(PI)4C00)
04llx20.*ALOGlOIO(I$/CM)

200 CO~NTINUE
RE TURN
END
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TABLE I. LIST OF INPUT VARIABLES

THETAO 80 Cone Angle - Degrees

WVLTH X Wavelength

SPAZMX Maximum Azimuthal Element Spacing in Wavelengths

SPAZMN Minimum Azimuthal Element Spacing in Wavelengths

RN Maximum Radius of Equivalent Planar Array

RADMIN Distance Along Generatrix from Cone Tip to First
Ring of Radiating Eleme- s

DRAD Separation of Adjacent Rings. Measured Along

Generatrix.

TAD T Angle of Plane of Cut - Degrees

PL Initial Angle of Pattern Cut - Degrees (0 Cor-

responds to Beam Pointing Direction)

PH Final Angle of Pattern Cut - Degrees

ST Step Size on Pattern Cut - Degrees

PHIP 4p Azimuth Beam Pointing Direction - Degrees

THETAP e Elevation Beam pointing Direction - Degrees.P
Measured from +Z

DX X - Spacing of Slots in Equivalent Planar Array

DY Y - Spacing of Slots in Equivalent Planar Array

PSIS Angle of Polarization Vector at Peak of Beam

(00 - Horizontal, -900 Vertical)

SRAN Actual Radius of Equivalent Array
MONO Switch for Selecting Sum or Difference Patterns

(0 - Sum; 1 - H-Plane Difference; 2*- E-Plana

Difference)
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TABLE I. LIST OF INPUT VARIABLES (Continued)

MQPH Number of Bits of Phase Quantization (MQPH-0 -

No Quantization)

ILIM Switch to Indicate Whether Full Cone or Limited

Region of Cone is Excited (0 - Full Cone,

> 0 - Limited Region)

RAL Radius of Projection of Excited Region (If ILIM

> 0)

NC Number of Curves to be Plotted on Same Set of Axes

NPI Number of Points to be Plotted in Curve 1

NP2 Number of Points to be Plotted in Curve 2

SX Length (Inches) and Type of Independent Axis

(If SX is Positive, a Linear Scale will be Drawn;

if SX is Negative, a Log Scale will be Drawn)

XMIN Smallest Value to be Shown on Independent Axis

DELX Scale Increment per Inch for Linear Scale;

Length in Inches of Log Cycle for Log Scale

SY Length (Inches; 1.0 <_ ISYI <_ 10.) and Type of
Dependent Axis (see SX)

YMIN Smallest Value to be Shown an Dependent Axis

DELY Scale Increment for Dependent Axis (see DELX)
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TABLE II. DATA FORMAT FOR CONEZ

Card No. Parameter Columns Format

1 THETAO 1-10 F10.5

1 WVLTH 11-20 F10.5
1 NUMCUT 21-25 15

2 SPAZMX 1-10 F10.5

2 SPAZMN 11-20 F10.5

3 RN 1-10 F10.5

3 RADMIN 11-20 F10.5

3 DRAD 21-30 F10.5

4 TAD 1-10 F10.5

4 PL 11-20 F10.5

4 PH 21-30 F10.5

4 ST 31-40 F10.5

4 PHIP 41-50 F10.5

4 THETAP 51-60 F10.5

5 DX 1-10 F10.3

5 DY 11-20 F10.3

5 PSIS 21-30 F10.3

5 RAN 31-40 F10.3

5 RAL 41-50 F10.3

5 MONO 51-55 15

5 MQPH 56-60 15
5 ILIM 61-65 15

6 NC 1-5 15

6 NP1 6-10 15

6 NP2 11-15 15

6 SX 16-25 F10.5

6 XMIN 26-35 F10.5

6 DELX 36-45 F10.5

6 SY 46-55 F10.5

6 YMIN 56-65 F10.5

6 DELY 66-75 FI0.5

Repeat Cards 4 and 6 for Each Cut to be Computed.
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TABLE III. LIST OF OUTPUT DATA

1. Maximum and minimum azimuthal slot separations.

2. Separation distance of adjacent rings measured along
generatrix.

3. Beam pointing directions in the coordinates of the cone,
Sand 0.

4. The cut computed (T), the beginning and ending values of
, , and the step size in t.

5. Maximum planar array diameter, RN

6. Actual Planar array diameter, RAN

7. Planar array element spacing DX, DY

8. Wavelength

9. Cone angle, 60

10. The Eulerian angles (ýsP os' es) that describe the angular

position of the planar array coordinate system relative
to the coordinate system of the cone.

11. The type of patterns calculated (sum, E-plane difference,
H-plane difference)

12. Slot locations and excitations

13. Amplitudes of field components parallel to the plane of
the cut (EPPP) and perpendicular to the plane of the
cut (ETPP), versus angle, t, along cut. Relative powers
in dB of the same components (normalized to peak value).

14. Plots of same variables as in 13.
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APPENDIX B

In this Appendix the Fortran program LOCEL is listed. This

program was used to study the relationships between reference

planar array size, position and orientation, and the location

of excited elements on a conical surface when only a limited

region of the cone is excited. The inputs required are given in

the listing. The outputs are the element numbers, their radial

distances from the cone tip, their azimuthal positions ýp, and

then angular positions, i, on the developed cone.
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C THIS PROGRAM COMPUTES THE LOCATIONS cir ELEPCNTS ON A CONE. THECY

C ARE ARRANGED ON RINGS WITH AZIMUTHAL SPACING or BETWEEN SO~ME

C MINIMUM VALUE, SPAZMN, AND SOME MAXIMUM VALUE SPAZMXe THt NUMOER

C Or ELEMENTS IN A GIVEN FINC IS DETERMINED E~Y THIS CRITERION. THE

C RADIAL SPACING OF RINGS IS ORA~e CYHER INPUTS REQUIRED ARE THE

C RADIUS OF THE LARGEST REFCREFKCE PLANAR ARRAY CONSIDERED, RK9 THE

C RAD`IUS Of- THE PROJECTION OF THE' EXCITED PORTION or THE COFNE9 RAN,

C THE DISTANCE FROP' THE CONE TIP TO THE FIRST RING Of ELEMENTS,

C RADKdIN, THE WAVELENGTH, THE POINTING ANGLES. THETAP AND PHIP. THE

C CONE'ANGLE. THETAO* ADJACEKT RINGS ARE SHIFTED BY ONE HALr THE

c ELEMENT SEPARATION TO PRovzCE A TRIANGULAR LATTICE*

C
DIMENSION P0(2000) .RC2000)
P!24e.ATANt 1.)
RA=PI /1RO.
READ(5*500) SPAZP"X, SPAZMN, 6VLTH

WRITE (69800)
PO0 FORMAT(/,91X,3X,6HSPAZMX@4X9 6HSPA7P'N,4X,5HWVLTH,/)

WRITE(69500) SPAZMX, SPAZMN. WVLTH

SEPMAX =SPAZMX*WVLTH
SErMIN = SPAZMN'hWVLTH
READ (l,;5O00)RNRADMINDRAD, THETAFPHIP.THETAORAN

WR ITE' C 6, 700 )
700 FORMAT(d/,*IX. 3X, 2 HRN,7X,6HRAChXN,5X.4HDRAD,6X@GHTHETAP9

5Xo

#4HPHIP95Xq6HTHETAO.7X93HRAN9/)
WRITr(6.500)RNRADM~IN.DRADTPETAPPHIPYTHETAO9RAN
TC=THCTAO .QAD
THTP=THETAP*RAD
PHP=PHIP 'RAD

500 FORMAT(7F1O.5)
S INO=s N ITO )
COSO=COS (TO)
COSP=COS (THTP)

SINP=SIN (THTP)
COPHP=COS(P HP)
SrPHP=SI N(iHp)
Z0=-RN/SJNV

* ,RMAX:(-RN,(1.4SXN0)/SINO-2.sVLTH)/COSO

WRITE(6,s600)

600 FORMAT(//91X94H N $35H4 R-INCHES PHI-DEG PSI-DrG NT9/)

1=1
J=0

RAD3.:RADMI N

NSLT=INT(2.OPI*RAD1*SrN0/(SEFMIN))
Ir(NSLToEg.0) NSLT1l

Do 100 N=291000
IF (RAD1.GToRMAX) GO TO 300
Srr =RADI*2.'PR'S IN 0/FLOAT(INSLT)

IF (SCP.GC*SEPMAX) NSLT=INTI2.*PI*RADI'SINO/(SCPMIN))
IF(NSLToEGO.) NSLTSI
DELPNI=2 ..PIFLOAT(NSLT)

.123 FORMAT(1XsI393F10e4,16)
DO 200 L=1,NSLT

Pal +(-1) 'N
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R 11) URADI
Po(I)=rLoAT(L-1) 'DFLPHI4

xzA(I)*$!N0*COStP0(I))
YzR(!)'STNo'SIN(PO'(1))
Z=Rt I)*COSO

Xp:X eCOPHP*Y*SXPMP
Yp=-XaS I PHP*Y *COPMP
ZP~z-zo
XPP:XP*COCfPZP*S IND
YFP=YP
ZFP=XP*S INP*ZP*COSP
R~flXYmSOPTIXPP**2*YPP**2)
zr(RH0XY.GT.RAN.OR.ZPP.LT.0.) GO TO 200
PD=PO IT) /PAfl

ZF(PCD*QT*1809) POD=PCD-3E6O.

PSX=POD*SINO~
WRITE(69123) 1,Rtx)qrDePSI*J

200 CONTINUr

PAnl=RAD1.DRAtD
100 CONTINUE
300 NSLOTZI-l

WRITr ,46900)NSLOT
4.00 FnRMAT(/tqXq18HNUME~ER OrT SLC'TS 9191f

END~
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CHAPTER 3

SLOTS ON CYLINDER-: PATTERN AND ADMITTANCE

3.0 INTRODUCTION

This chapter is concerned with the pattern and input admit-

tance of a single slot on a conducting circular cylinder, and

with the mutual admittance between two identical slots on a cyl-

inder. The curvature of the cylinder affects both patterns and
admittance; these effects are determined through application of

a modal representation, a vector cylindrical harmonic series

that satisfies all boundary conditions over the cylindrical sur-

face. This type of solution is useful for cylinders of small to

moderate radius in wavelengths, while the GTD approach of Chap-

ter 5 is useful for large diameter cylinders.

3.1 Pattern

The boundary value problem of radiation from a slot (with a

sinusoidal distribution) on a metallic cylinder was solved

exactly several decades ago. (Carter, 1943; Harrington & Lepage,
1952; Knudsen, 1959). The solution is a harmonic series of func-

tions appropriate for the cylinder: Bessel and Hankel functions.

A standard cylindrical coordinate system is used, where z, 8,

are the axial, polar, and circumferential coordinates. Finite

width of the slot has a small effect upon the patterns, but the

appropriate factor can be included if desired (Collin and Zucker,
1969). With slot voltage V and cylinder radius a, the fields for

an axial half wave slot are (Wait, 1959): E8 -0, and;

F -• m Cos MO

Ee = Vcos (T-cos 0) Jm (la)

2Tr2 ka sin2 0 H (ka sin 0)
m= 0 m
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This pattern is that of a half wave dipole modified by the sum-

mation. For a circumferential half wave slot, again thin, the

fields are:
Sm+l (1b)

Ee = 2ka V Em cos mý cos m(/2ka
222 2)

f sin 0 cos 0 (k2a - m2 Hm(ka sin 0)
m 0 0

.ml(Ic)

E 2 V cos 0 e m mj sin mo cos mn/2ka
E= 2 -2 2 2k2

T sin 8 (ka - m H (ka sin 0)
m 0 0

Convergence of these series is controlled by ka, where k = 27/X.

Between ka and 2ka terms are usually needed. Large cylinders

thus require many terms but with current computer capability

many tens of terms can be included. However, for such large
cylinders the Watson transformation has been used to convert the

harmonic series above, which results from an evaluation of an

integral at real poles, to a residue ser'.es of complex order

Hankel functions, evaluated at the complex poles. For large

cylinders the residue series, which is analogous to the Regge

pole series in quantum mechanics, converges with only a few terms

(Collin and Zucker, 1969). Wait (1959) has computed the sum for

the azimuth patterns of primary interest: E for an axial slot,

and E for a circumferential slot. His results are given in

Figures 1 and 2. It is interesting to note the axial slot elec-

tric field produces diffractiin interference behind the cylinder

whereas the circumferential slot pattern exhibits a smooth decay.

Computer code listings or descriptions are not included as the

formulas are straight forward. These patterns are used with the
212I
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array factor and active reflection coefficient to produce the
complete pattern.

3.2 Admittance

3.2.1 Definition of Slot Admittance

In the design of a conformal slot array on the surface of a
conducting cylinder, the calculation of the mutual admittance
Y is a crucial step, which has been studied extensively in
recent years. Referring to Figure 3, two identical slots, cir-
cumferential o0 Lxial, are located on the surface of an infinite-
ly long cylinder. The geometrical parameters are

R - radius of the cylinder

(a,b) - dimensions of the slot along (0,z) directions (a is
the arc length along the cylinder)

(z 0 ,R 0 ) - center-to-center distances between slots

S; "4z2 + (R 0 )2

-0 = tan- (Z 0 /RfO)

The problem is to determine the mutual admittance between these
two slots when kR is large.

First define mutual admittance. Throughout this work it is
assumed that

(i) the slots are thin, and

(ii) their length is roughly a half-wavelength.
Then the aperture field in each slot can be adequately approxi-
mated by a simple cosine distribution, which is the so-called

"one-mode" approximation. For example, if slot I is circum-
ferential (lower slot in Figure 3a), its aperture field under
the "one-mode" approximation is given by (exp + jwt time conven-
tion)

214
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S- J, - i1 1  (2)

where

e- g cos . y , h1 - x e

(3)
y- Ra

(VlI 1 ) are respectively the modal (voltage, current) of slot 1.
The mutual admittance Y is defined by

212
Y Y 12 (4)

where I21 is the induced current in slot 2 when slot 1 is excited
by a voltage V1 and slot 2 is short-circuited. An alternative
expression for Y12 is

Y12 f 2 !2 xl a'2 (5)

where

A2 - aperture of slot 2

- magnetic field when slot 1 is excited with voltage

V1, and slot 2 is covered by a perfect conductor.

-2 - electric field when slot 2 is excited with voltage
V2 , and slot I is covered by a perfect conductor.

Because nI - I21i2 and22 - V2' 2 , it is a simple matter to veri-
fy that (4) and (5) are equivalent (Richmond, 1961).

There is an alternative definition of mutual admittance.
Instead of (2), a modal voltage V1 (with a bar) may be defined
through the expression for the aperture field of slot 1 as

follows:
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S- z VI cosa y (6)

or equivalently

'b/2
V fb/ 2  (z•E)Y0 dz (7)

Then a different mutual admittance Y is defined by (5) after
replacing (VIV 2 ) by (VI2). It can be easily shown that

X12 - a Y12  (8)

Two remarks are in order: (i) In the limit:.ng case that b P 0,

Y12 goes to zero as b , whereas Y1 2 approaches a constant inde-
pendent of b. (ii) For the special case a - X/2 and R - •, it

is Y12 that is identical to the mutual impedance Z12 between two
corresponding dipoles calculated by the classical Carter's
method (Jordan and Balmain, 1968; Hansen, 1972). (iii) When the
slots are excited by waveguides (transmission lines), one often
uses Y12 (Y1 2 )" From here on, attention will be given to Y12
instead of Y 12.

The mutual admittance defined in (4) and (5) includes the
self admittance Yll as a special case which occurs when two
slots coincide. (All the formulas of Y1 2 given in this section,

except for the one developed by Lee in Section 3.2.2, can be
used for calculating Yll by setting *0 * 0 and t0 * 0.)

3 2.2 Mutual Admittance Using Modal Series

A canonical geometry that yields insight into the behavior

of slots on a cylinder is an array of infinitely long axial thin
slots (slits) deployed all around the cylinder. Sureau and
Hessel (1969, 1971, 1972; Heseel and Sureau, 1971, 1973: Hessel,

1972) derived active element patterns using the unit cell approach
of Oliner and Malech (1966) identifying a direct component
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associated with the integrated saddle point, and a set of leaky

waves representing complex poles (natural resonances) of the

periodic cylinder. Pattern nulls due to external dielectric

sheet covers were also exhibited. The unit cell approach was

extended by Munger et al (1971) who considered an infinitely

long cylinder covered with a regular array of axial slots. A

different approach gives insight into coupling between azimuthal

modes. Borgiotti and Balzano (1970, 1972A, 1972B; Balzano, 1974)
decomposed a ring of slots into a sum of eigen excitations

(modes) and then computed coupling between modes on adjacent
rings. If this were generalized to obtain mutual admittance be-I tween two slots, each on a different ring, the result would be

the modal series admittance, using the cylindrical Green's func-
tion (Bowman et al, 1969). This approach, developed by Prid-

more-Brown and Stewart, and extended by Lee is the most useful

as it gives mutual admittance between slots directly. It is the
subject of the next part of this chapter.

A modal series was developed by Golden, Stewart, and
Pridmore-Brown of Aerospace Corp. (1974)* utilizing a series for
the azimuth poles in the Green's function, and an integral for
the continuous spectrum in z. This series has been used exten-

sively by Hughes in obtaining Y12 for slots on a cylinder. The
infinite integral must be approximated, and this is facilitated

by assumption of a small loss in the medium via a small negative
imaginary part of k. This becomes less satisfactory as z be-
comes larger, but a modified solution for that regime will be

discussed latar.

The mutual aerdwttance formulas as used by Hughes are as fol-

lows:

*See also Golden and Stewart, 1971.
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Circumferential. slots

(9)

YI2 dkz • i(mk z)G(mk z)e

where2

where ab sin 2(k zb/2) sin (m;a + n/2) sin (mia - it/2) 2

8 z 2 2 (- (m + r/2i + (m -7r/2) -
8tr R (k b/2) aa

z

a= (a/2R)

[k H2(kR) mk H(2) kR

m (ktR
I~mk z 2)' +H-2 (2)(k

H~n~ (k R) k R H (kff

k 2 ifk.< k-- z

Axial slots (10)
d 0-J(MO

Y2 = Idk. • (m,k ) F(m,k )e 0 z 0
12 Jz z

where

sin(tno cos(k b2
'kz) R (m) (/2) 3

I a Ck zb/2) -(n/2)

K H (2)(kR

F(mk Y m t
z 0 jk H (2)' (k a)
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Lee and Mittra (1976) developed ani Alt~v"Ste mndal serieq,

suitable for large z. Consider firAt circivn.ferti•1. qint".

Rewrite YI" in terms of its real and imaginarv narts.

Y2 G + J.

It can be shown that G is given by

G _0_____ cos kzz 0 *(m,kz)R(m,kz) dkz (11)

where r /• \2 _

t~~ tjz
R~mk 2 __ .k0 1 1

Mj(x) - JM(x + 2MX

Nr(X) " J 2 (X) + Y; 2 (x)

2, m- 3

1 m~ 0

Note that G contains a finite integral and can be evaluated in a

straightforward manner by standard numerical integration tech-

niques. The imaginary part of YI2"s given by

cos k z *(mk W(m,kz) dkz (12)

1 m-0 m

where the integration contour C1 is shown in Fig. 4 and

220

S-- - - ._,!tA



* Im k1, ,

C2

CI Re kz

Figure 4. Contours in the complex kz-plane for the integral

in (14)
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(0) k if k > k- (0 j, + y y,) .. ..... . z

W(m,kz) " (13)

~1c~FK'ikti~ - m K(k~I)~l if k < k
Ik- ILK d(IktIR) Ik.k.R) K .IktIR)J 0.

The computation of B as given in(12) can be quite laborious be-

cause (i) the integration with respect to kz is of infinite
range, and the factor cos kzz0 is highly oscillatory for large

k0 z0 , (ii) W(m,kz) has nonintegrable singularities of opposite
sign on both sides of kz - k0 , (iii) W(m,kz) decays slowly with
respect to m and kZ.

To circumvent the above difficulties in evaluating B, a

method introduced by Duncan (1962) in the study of cylindrical
antenna problems is adopted. Rewrite (12) as

3-Cos MO z z Fm k~ zk)
B ( I j F(mk z) sin k zz0 dkz + F(m,kz)e0 M 1

where

F(m,kZ) - [R(m,kz) + JW(mkz)])(mk Z)

The imaginary part of the first term inside the bracket of (14)
is

Im"i J F(m,k ) sin k z0 dk) R(mk O)(m,k ) sin kzz 0 dkz

S2(15)

222



In order to compute the imaginary part of the second term of
(14), the integration contour C1 is deformed into C2 (Fig. 4)

according to the theory of complex variables. This manipulation

leads to

jk~z 0 )ejk Zz0
Imf F(m~kZ)eiZO dk an IMf F(m.k) e 0 dk . (16)

Make the change of variable k- jn in (16). Substitution of
the resultant equation and (15) into (14) gives

Cos M*0  0pmk
B I o m fBR(m,kz) sin dkz

S+f• nz 0 )

+ R(m,j n) *(m,j n)e dn (17)

The final expression for Y12 is given by the real part G in (11)
and the imaginary part B in (17). Several remarks are in order:
(i) Not only G but also B is determined by R(m,kz), which is
much simpler than W(m,kz) defined in (13). (11) G contains only
a finite integral. (iii) The infinite integral in B, i.e., the
second integral in (9a), contains an exponentially decaying fac-
tor exp[-(z 0 - a)n] in its integrand. Thus the larger zO. the

faster convergence in the evaluation of B. This is in contrast
to the original expression of Y,2. (iv) There is no noninte-
grable singularity in (11) or (17).

The same method applies to the derivation of an alternative
expression of Y for two axial slots (a < b as shown in Fig. lb).
Only the final result is given:
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k 0m Frkz dk
abY0  2o O z

12 k 0 ItL M- M N M(k tR)

+ I O ("u,jn)e- O -0 .-

where

(--n (Mea/2) cos (k b/2) 2

*(°"',•~~ ~~ 11 -• -z• ...- •;i --- i-J
tIIýa/ 2) (b2)j

L a ((b/2) 2)

a 2 sin-1 (a/2R) .

3.2.3 Mutual Admittance Data -- Slots on Cylinder

Using the computer codes described, slot mutual impedance

data have been calculated for both axial and circumferential

slots. All data are at 9 Ghz, for two slot dimensions: 9 x

".4 in, and .9 x .2 in. A summary of the data set parameters is:

Data Set A Circumferential .9 x .4 Radius 1.991 in.

Data Set B Axial .9 x .4 Radius 1.991 in.

Data Set C Circumferential .9 x .2 Radius 1,2,4,10 X

Data Set D Axial .9 x .2 Radius 1,2,4,10 X
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DATA SET A

Circumferential slot 9. x .4 in
Cylinder radius 1.991 in except as noted
Frequency 9 Ghz

Table Al gives mutual admittance amplitude and phase for
spacings from 0 to 30 in., and rotation angles 0 to 90 deg. See
Fig. 3. Fig. Al shows Y12 versus rotation angle *0 for an axial
spacing of 2 in. Figure A2 shows the important result that slot
coupling is stronger for two parallel slots on a cylinder than
on a plane. That is, the mutual admittance depends upon trans-
verse curvature. This result led to a search for a quantifica-
tion in terms of geometric diffraction, and for physical mechan-
ism; the results are given in Chap. 5. The ratio of cylindrical
to planar coupling, in terms of transverse curvature, is depicted
in Fig. A3. This data set, and that which follows, are for open
end waveguide slots, and thus are useful for validating simple
experiments.
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TABLE Al

Y12 FOR CIRCUMFERENTIAL SLOTS

*o

z0 0 deg 30 60 90

0 in -81.33 db -101.97
-77 deg - 49

.5 -62.62 db
-72 deg

1 -66.82

155

2 .- 71.78 -77.60 - 89.98 -103.15

-117 175 - 4 116

4 - 76.89
54

8 81.84
34

12 - 84.61

15
16 - 86.48

-4

20 - 87.91

- 24

30 - 90.33
1101

226



?3VCdQZflIVIPA4ON
0 

00i 0co C

00

49 0
0 $4

,1 41

S0 C14

cl 00IXC r

tk

(GP I zli N

/b 227



w 0.

-- A

6 04

a14J

0
0 "0

SP 0l

228~



A 8VNV~d /~A 'NfO JSVHd

>40

0 In
0.

8- in~

z
0 01 

U

C~)

cd c

O 
0

o o- o)-

CI J 0 I
ca

$4.4

oo H4
'I I,0
ON .a c

Ii '~ 6-A

wooa4

90

O en

0 OD

c'J

8' VNV-ld /ZA NflAQ) 9VV~I

229

~-~44- 
1



DATA SET B

Axial slot .9 x .4 in
Cylinder radius 1.991 in except as noted
Frequency 9 Ghz

Tables Bl and B2 give mutual admittance as a function of
axial and circumferential slot separation, as before. Fig. Bl
compares admittance versus axial separation for slots on a
cylinder and on a plane. Here unlike the circumferential case
the two are nearly equal, and the difference is perhaps the
calculation error. Transverse curvature thus does not affect
axial slots significantly.
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TABLE B1

Y12 FOR AXIAL SLOTS

00 = o

z 0 Y12

1 in - 77.38 db - 59 deg

2 - 92.00 8

4 -104.68 172

8 -116.93 151
12 -123.86 134

16 -128.96 115

24 -136.07 81

32 -141.24 59

TABLE B2

Y12 FOR AXIAL SLOTS

z - 1.5 in

0 deg - 86.58 db 151 deg

30 - 86.41 - 26

60 - 87.43 84

90 - 93.02 169
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DATA SET C

Circumferential slot .5 x .2 x
Cylinder radius 1,2,4,10 x

Table Cl gives mutual admittance versus axial and circum-
ferential slot separation; the coupling is considerably weaker
than for the .9 x .4 in slots of Data Set A as those slots are
considerably larger. Figs. Cl, C2, and C3 give variation of
Y12 versus angular and axial separation. This data set is use-
ful as such small slots (smaller than waveguide) may be necessary
to achieve a lattice spacing that will obviate grating lobes,
and to achieve crossed slots for dual polarization.
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TABLE Cl

Y12 OF CIRCUMFERENTIAL SLOTS

•00 R-A ý0, R-2X

z 0 deg 30 60 0 30 60

.5X - 67.87 db -68.69

-117 deg -114

1 72.54 -77.34 -88.05 -73.64 -86.37 -103.77

67 25 -91 73 -77 - 41

2 - 77.46 -78.98

68 75

4 - 82.22 -84.30

66 75

8 - 86.65 -89.41

62 72
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DATA SET D

Axial slot .5 x .2X
Cylinder radius 1, 2, 4, 10O

Table Dl gives data for a few combinations of angular and

axial separations, for radii of one and two wavelengths. Fig.
D1 gives Y12 versus axial spacing.
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TABLE Dl

Y OF AXIAL SLOTS

R0 -R X0 R 2X

z 0 deg 30 60 0 30 60

- 87.06 db -89.40 -89.84 -86.83 -87.01 -91.86

-171 deg 85 -83 -172 -72 -61

2 - 99.97 -99.61

-174 -176

4 -112.43 -111.93

-175 -177

8 -124.33 -124.12

-174 -177
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4.3 Computer Program

The UI computer subroutine for mutual admittance between
axial slots on a cylinder is PROGI, while that for circumferen-
tial slots is PROG2. Both subroutines may be imbedded into a

simple main program that loops as desired over any of the input
parameters. These subroutines utilize a subroutine FMFN which
computes Bessel factors in the sum; Bessel function subroutines
are also included as some extant subroutines are insufficiently
accurate. Test case data follow the code listings, which are
in standard FORTRAN 4.

SUBROUTINE PROGI (RHOAMPY,PHASEYAMPYDBPF'HASNM)
PROGRAM TO COMPUTE THE MUTUAL ADMITTANCE BETWEEN TWO IDENTICAL
AXIAL SLOTS ON A CYLINDER ( UI MODAL SOLUTION)
REAL KOKZ,KT, I2,KZKTRO
COMPLEX I1,Y12,PSIEXPYN12
REAL FI(400), FM(400),FN(400)iAIMAGREALATAN2
COMMON/EIATA3/KONC'YCLEF'HIOZOYllMMAXAB
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C INPUT PARAMETERS:*
c KOlnWAVE NUJMBER IN FREE SPACE IN TERMS OF 1/INCH
C NCYCLE=NO. OF SUBSECTIONS BETWEEN ANY TWO SUCCESSIVE ZEROS OF INTEGRAND
C IN TRAPEZOIDAL RULE FOR NUMERICAL INTEGRATION
(C A*B= SLOT DIMENSION B::>A -"INCH>
(1 RHOmRADIUS OF' CYLINDER <INCH".
c PHIOSANGUILAR SEPARATION OF THE SLOTS (CENTER TO CENTER) <RADIAN>
C ZU0 SEPARATION OF THE SLOTS IN Z-DIRECTION <INCH>
G Y11= NORMALIZATION FACTOR
C, MMAX= MAXIMUM NO# OF 'TERMS WHICH HAS BEEN USED IN CALCULATION OF
C INFINITE SERIES

PI=3. 14159265
Y01 ./( 120.*PI)
FRFO0=3#E1O*I•O/( 2**PI*2.54)
AKA=KO*A
BK B 10* B
RK=K<O*RHU

C FPHIA=HALF* ANGULAR WIDTH OF' THE SLOT
F'HIA=2.*ASIN(A/(2.*RHO))

G COMPUTATION OF INFINITE SERIES
MMAX12=MMAX+l
['0 100 M=1,MMAX12

IF*(MoEQ*I) GO TO 99
F1(M):=(COS(Ml*PHIO)*(.SIN(M1*FPHIA/2.)/(M1*F'HIA/2,))**2
60 TO 100

99 Fl. (M)=0. 5
100 CONTINUE

C INTEGRATION OF PSI(KZ)*R1(MPKZ)*EXP(-J*KZ*ZO) BETWEEN 0 AND KO0
C, DELTA= NEIGHBOURHOOD OF THE SINGULAR POINT KZ=KO IN WHICH THE INTEGRAL
C HAS BEEN CALCULATED ANALYTICALLY

DELTA= .+E-7*KO
C NSECTI=N0. OF SAMPLES IN THE INTERVAL (0.rKO-DELTA).

NSE:CTi=(IFIX((P+ZO+RHO)*KO/PI)+2)*NCYCLE
DKZ=(KO--DELTA)/NSECTI
NSECT=NSECTI+1
Ii =(0., 0,

C E1-FIRST INTEGRAL (BETWEEN 0. AND KO0)
DO 200 I=INSECT
1•Z=(I--"I)*DKZ
IF*(KZ.EQ.0) KZ=0#00001*KO
CIN=1.

*I:FUI.:EQ.l).OR.(I.EQ.NSECTr)) CIN=0.5
KT'=SQRT(KO*KO-KZ*I(Z)
IF(ABS(KZ*B/2,-PT/2*),LEo1.E-8) KZ=1.000001*KZ
F'SIEXP'=(COS(KZ*E'/2.)/((KZ*B/2.)**2-(PI/2.)**2))**2*CIN*DKZ
&*CEXP( (0. ,-1.)*KZ*ZO)
MMAXI=MMAX
ROKT=RHO*KT

C COMPUTATION OF FM(N)=1./(JN(X)**2+YN(X)**2) AND FN(N)=1./(DJN(X)**2+
C DYN(X)**2) FOR X=ROKT AND N=O TO MMAXI WHERE MMAX1 IS A NUMBER AFTER
C WHICH THE CONTRIBUTIONS OF FM(N) AND FN(N) TO THE INFINITE SUM
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C BECOME NEGLIGIBLE, MMAX1 IS A FUNCTION OF THE ARGUMENT X AND IS ALWAYS
C1 LESS THAN OR EQUAL TO MMAX. MMAX1, FM(N) AND FN(N) ARE CALCULATED
C BY SUBROUTINE FMFN(XPMMAXIPFMPFN).

CALL FMFN(ROKTPMMAXIPFMPFN)
DO 200 M=IPMMAXI
M1=M-l

200 11=11+FN(M)*PSIEXP*Fl(M)
C COMPUTATION OF 12 (BETWEEN ZERO'AND ETAMAX ;WHERE ETAMAX IS A NUMBER
C AFTER WHICH THE INTEGRANEI BECOMES VERY SMALL)

12=0.
ETAMAX=14./(ZCJ-B)

C THE INTEGRATION IS CARRIED OUT BY TRAPEZOIDAL RULE. AT FIRST THE WHOLE
C RANGE OF' INTEGRATION (0.,ETAMAX) IS DEVIDED INTO TWO SUBINTERVALS :
c (0,,ETAI) AND (ETAIPETAMAX) v WHERE ETAI=ETAMAX/2*. THEN THE NUMERICAL

G COMPUTATION OF THE INTEGRAL IS PERFORMED IN THESE SUBINTERVALS WITH THE
C NO. OF SAMPLES IN~ THE FIRST SUBINTERVAL TWO TIMES THAT IN THE SECOND ONE.

ETA 1=7./(ZO-B)
NSECTI=(IF'IX(SQRT(KO*KO+ETAI**2)*RHU/PI)+2)*NCYCLE
ElETA 1=E TAI./NS EC TI
DETA2=2#*DETAl
NSECT*12=IF'IX( (ETAMAX"-ETAI)/DETA2)+I
NSECT=NSECTI+NSECT2+2
DO 300 I~1,NSECT
IF(I*LE*NSECT1+1) GO TO 220
ETA=ETAI+( I-NSECTI-2)*DETA2
DETA=DETA2
GO TO 240

220 ETA= (1-1) *DE TA I
IF(ETA.EQ.0s) ETA=0.0001/A
DEiTA =DE TA 1

240 CIN~1.
IF(II.EQ.I).OR.(I.EO.NSECT1+i).OR.(I.EQ.NSECTI+2).OR.U.*EQ.NSECT)

9) CIN=0,*3
PSEX=(COSH(ETA*B/2. )/( (ETA*B/2. )**2+(PI/2, )**2) )**2*DETA*CIN
&*EXP(-ETA*ZO)
KT=SGRT (KO*KO+ETA**2)
MMAXI=MMAX
CALL FMFN(RHO*KTPMMAXIPFMYFN)
DO 300 M=IPMMAXt
MI=M-1

300 12=I2+F'N(M)*rSEX*FI(M)
Y12=( 11+(0. 1. )*I2)*A*B*YO/(PI*KO*RHO**2)

CNORMALIZATION OF THE PHASE OF Y12
YN12=Y12*CEXP((0.vl.)*(KO*SQRT(ZO*ZO+(RHO*PHIO)**2)))

C COMPUTATION OF THE ACTUAL PHASE tPHASEY' AND NORMALIZED PHASE 'PHASNM'
C, OF Y12o

FPHASEY-ATAN2(AIMAG(Y12) ,REAL(Y12) )*180./PI
PHASNM=ATAN2(AIMAG( YN12) PREAL (YNi2) )*180./PI

C COMPUTATION OF THE MAGNITUDE OF THE Y12 IN TERMS OF <MHO> AND <DB>.
AMPY=CABS (Y12)

AMPYDB=ALOGIO(AMPY/ABS(Y 1) )*20, 1
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ZOK=KO*ZO

FIHIOD=PHIO*180./FPI

RETURN
END
SUBROUTINE F'ROG2(RHOAMPY, PHASEYAMPYDB, PHASNM)

G C PROGRAM FOR COMPUTATION OF THE MUTUAL ADMITTANCE BETWEEN TWO
C IDENTICAL CIRCUMFERENTIAL SLOTS ON A CYLINDER(UI MODAL SOLUTION)

REAL KOKZKTI2,KZKTRO
COMPLEX I1,Y12,PSIEXPYN12
REAL F1(400), FM(400) , FN(400),AIMAGREALiATAN2
COMMON/DATA3/KONCYCLEPHIOZO, Y11,MMAXA,B

( INPUT PARAMETERS :
C KO=WAVE NUMBER IN FREE SPACE IN TERMS OF I/INCH
C RHO=RADIUS OF' CYLINDER <INCH:>.
C PHIO=ANGULAR SEPARATION OF THE SLOTS (CENTER TO CENTER) <RADIAN::".
C Z9= SEPARATION OF' THE SLOTS IN Z-DIRECTION <INCH>
C YIi:= NORMALIZATION FACTOR
C MMAX= MAXIMUM NO. OF TERMS WHICH HAS BEEN USED IN CALCULATION OF
C INFINITE SERIES
C NCYCLE=NOo OF SUBSEICTIONS BETWEEN ANY TWO SUCCESSIVE ZEROS OF INTEGRAND
C IN TRA"EZOIDAL RULE FOR NUMERICAL INTEGRATION

F'1=3. 14159265
YO=1./(120.*F'I)
FREQ=3, E 10*KO/(2. *PI*2.54)
AKA=KO*A
BK.B:=KO*B
RK-::KO*RHO I

C PHIB=HALF ANGULAR WITTH OF' THE SLOT
PHIB=:ASIN(A/(2.*RHO))

C COMPUTATIUN OF INFINITE SERIES
MMAX 12=MMAX+1
DO 100 M=1,MMAX12
M 1:-: M- 1
EF'M=1,
IF(MEQ0,1) EPM=2.
P'HIBI. PHIB
•iF(ABS(PHIB*MI-PI/2.).LE.1.E-7) PHIB1=PHIB*1,001

1O00 FI(M)=COS(M1*PHIO)*(-PI*COS(MI*PHIB1)/(((MI*PHIBI1)**2-(PI/2,)**2
.)) )**2*( 1/EPM)

C INTEGRATION OF PSI(KZ)*RI(MKZ)*EXP(-J*KZ*ZO) BETWEEN 0 AND KO
C DELTA= NEIGHBOURHOOD OF THE SINGULAR POINT KZ=KO IN WHICH THE INTEGRAL
C HAS BEEN CALCULATED ANALYTICALLY

DELTA=O.0001*K0
C DELTA1= NEIGHBOURHOOD OF THE SINGULAR POINT KZ=KO WHERE THE INTEGRAND
C VARIES RAPIDLY AND 'NDELTA' SAMPLES HAVE BEEN USED,

DEL TAI=0.01*KO
NDEL TAx 100
DRKZ2" (DELTA 1-DELTA) /NDELTA

L NSECTI NO. OF S1JBSECTIONS BETWEEN 0 AND KO-DELTA1
NSECTI=(IFIX((E+ZC+RHO)*KO/PI)+2)*NCYCLE
DKZ1=(KO.-DELTAJ )/NSECT1
NSEC- TNSE, T 1 +NEILLTA+2
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C I1=FIRST INTEGRAL (BETWEEN 0. AND KO)
Ii=(0. ,0. )
DO 200 I=lrNSECT
IF(I,LENSECT1+1) Go *ro 120
KZ=KO-DELTAI+(CI-NSECTI-2 )*DKZ2

GO TO 140
1-20 KZ=(I-1)*DiKZI

IF(KZ*EQ.0) KZ=0.00001*KO

140 (X(IN=1,s

9) CIN=0.5i
KT=SOJRT (KO*KO-KZ*KZ)
F'SIEXP=(SIN(KZ*B/2. )/(KZ*B/2 ) )**2*CIN*DKZ*CEXP( (0. ,-1.)*KZ*ZO)
MMAXI=MMAX
ROKT=RHO*KT

C COMPUTATION OF FM(N)=lo/(JN(X)**2+YN(X)**2) AND FN(N)=1./(DJN(X)**2+
C DYN(X)**2) FOR X=ROKT AND N=O TO MMAX1 ; WHERE MMAXI IS A NUMBER AFTER
C1 WHICH THE CONTRIBUTIONS OF FM(N) AND FN(N) TO THE lNiJINITE SUM
C BECOME NE--GLIGIBLE, MMAXi IS A FUNCTION OF THE ARGUMENT X AND IS ALWAYS
C1 LESS THAN OR EQUAL TO MMAXs MMAXlv FM(N) AND FN(N) ARE CALCULATED
C BY SUBROUTINE FMFN(XPMMAXIPF'MPFN).

CALL. FMFN(R0KTvMMAX1 ,FMFN)
KZKTrRO:=KZ/(KLT *KO*RHO))**2
DO 200 M=IPMMAXI

Rl::*-(1,/KT**2)*(FM(M)+M1**2*KZKTrRQ*F'N(M))
200 Il=II+R1.*PSIEXP*F1(M)

11=-.(2.*KQ/(PI*RHO))*(I1-Fl(1)*CEXF((0.v-l,)*KO*ZO)*(PI*Pl/(2.*KO))
£*(SIN(KO*B/2.)/(KO*B/2.))**2/(2.*(0,5772156649+ALOG(RHO*SQRT
&(KO/2. ) ))+ALOG(DELTA)))

C COMPUTATION OF 12 (BETWEEN ZERO AND ETAMAX 0WHERE ETAMAX IS A NUMBER
C1 AFTER WHICH THE INTEGRAND BECOMES VERY SMALL)

1 ". = 0 .
ETAMAX=14./(ZO-b)

G rHE INTEGRATION IS CARRIED OUT BY TRAPEZOIDAL RULE. AT FIRST THE WHOLE
C RANGE OF INTEGRATION (0.vETAMAX) IS DEVIDED INTO TWO SlBINTERVALS:
C (09PEr~1) AND (ETA1PETAMAX) r WHERE ETAI=ETAMAX/2#. THEN THE NUMERICAL

C COMPUTATION OF THE INTEGRAL IS PERFORMED IN THESE SUBINTERVALS WITH THE
C NO. OF SAMPLES IN THE FIRST SUBINTERVAL TWO TIMES THAT IN THE SECOND ONE.

ETAL=7#/(ZU--B)
NSE:CTl=( IF'IX(SU4RT(KtJ*KO+ETA1**2)*RHO/PI )+2)*NCYCLE
BE TA1=E TA1/ N SE C Ti
LIETA2 =2.# *DE TAAI
NSECI'12=if:IX((ETAMAX-ETA1)/DETrA2)+I
NSEC'T =NSEC TI1+NSEC T 2+2
DO 300 I=IvNSECI'
IFf1.LE.NSLt;T1+1) 0O TO 220
ETA=ETAI+( I-NSECT1-2)*DETA2
BE TA=DE TA 2
0O TO 240
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220 ETYA=1I--1)*IETAl
IF(ETA.EL1,0.) ETA=0#0001/B
IE TA=DE TAl1

240 CIN=1.
IF((I.EQ.1).OR.(I.EQbNSECT1+1).OR.(I.EQ2.NSECTI+2).OR.(I.EQ.NSECT)
8) CIN=0-5
PSEX=(SINH(ETA*B/2, )/(ETA*E'/2 ) )**2*EXP(-ETA*ZO)*DETA*CIN
Kr=SQRT(KO*KO+ETA**2)
ETKTRO=(ETA/(RHO*KO*KT) )**2
MMAXI=MMAX

* CALL FMFN(RHO*KrPMMAXIPFMPFN)
DIO 300 M=IPMMAX1
Mi=M-i
Rl=1/(KrI*KT)*(FM(M--M1*M1*ETKTRa*FNu1))

300 12=12+FI.(M)*R1*PSEX
121I2*2. *KU/(FPI*RHO)
Y12=(I1+(0,w1 4 )*12)*A*B*YO/(2.*PI*F1*RHO)

C NOR~MALIZATION OF' THE PHASE OF Y12
YN12=Yl2*CEXFPUO.,1,)*(KO*SQRT(ZO*ZO+(RHO*PHIO)**2)))

CCOMPUTATION OF THE ACTUAL PHASE 'PHASEY' AND NORMALIZED PHASE 'PHASNM'
C OF Y12.

F'HASEY=A*TAN2(AIMAG(Y12),REAL(Y12))*180./PI
PHASNM=A'TAN2(AIMAG(YN12),REAL(YN12))*180,/PI

C COMPUTATION OF THE MAGNITUD~E OF THE Y12 IN TERMS OF <MHO> AND <DB>.
AMPY=CA4S (Yl2)
AMFYDE4=ALOGIO(AMFY/ABS(Yi1))*20,
RPHIK:=KO*RHO*PHIO
ZOK=KO*ZO
PHIO)D=PHIO*180./PI
RETURN
E ND
SUBROUTINE FMF'N(XPNPFMRFN)
REAL DUMI (400) ,DUM2(400)
REAL. FJ1(400)vXBBSSY(400),FM(400),FN(400)
PI=3*14159265
XB=X

10 GAMLOG=ALOG(X/2. )+0*5772156649
X2=X*X
X3=X2*X
X4=X*X3
X5=X*X4
E4SSYI=2.*(OAMLOO*(1.-X2/4.+X4/64,)+X2/4,--3.*X4/128.)/PI
BSSY2n--2,,/(FPI*X)+-2.*(GAMLOG0*(X/2.-X3/16,+X5/384. )-X/4.+1 .25*X3/16.
9-3.33333*X5/766. )/PI
GO TO 25

20 CALL BESY(XP0,BSSY1,IER)
* CALL BESY(Xv1,BSSY2vIER)

25 CONTINUE
BSSY( 1)=BSSY1
BSSY (2) =BSSY2
DEISSYI=-BSSY(2)
I=1

80 I=I+l

E'SSYI1=BSSY(I+l) 246



IF(ABS(BSSYI1).GE.I.EIO) GO TO 100
GO TO 80

100 NMAX=I+I
IF(NMAX.GE+N) NMAX=N
NNI=N-1
CALL. BSLJZ(XBFJNMAX+lr0°DOO,7,IERRDUMIDUM2)
DFJ1=-FJ(2)
FM(1)=i ./(BSSY(1)**2+FJ(1)**2)
FN(1)=Io/(DBSSYI**2+DFJi**2)
DO 200 I=I,N1
IF'(IGE°NMAX) GO TO 250
DBSSY=BSSY(I)-I*BSSY(I+1)/X
DFJ=FJ(I)-I*FJ(I+I)/XB
F'M(I+I)=lo/(BSSY(I+I)**2+FJ(I+1)**2)
FN(1+1)=lo/(DBSSY**2+DFJ**2)

200 CONTINUE
250 CONTINUE

N-NMAX
RE T L) R N
ENE,

C SUBROUTINE 'BESY'
C PURPOSE BES
C COMPUTE THE Y BESSEL FUNCTION FOR A GIVEN ARGUMENT AND ORDERBES
(1 BES
C USAGE BES
C CALL BESY(X,N,BYIER) BES
C BES
C DESCRIPTION OF PARAMETERS BES'
L.. X --THE ARGUMENT OF THE Y BESSEL FUNCTION DESIRED BES
C N -THE ORDER OF THE Y BESSEL FUNCTION DESIRED BES'
C BY -THE RESULTANT Y BESSEL FUNCTION BES'
C IER-RESULTANT ERROR CODE WHERE BES'
C IER=O NO ERROR BES'
C IER=I N IS NEGATIVE BES'
C IER=2 X IS NEGATIVE OR ZERO BES'
C IER=3 BY HAS EXCEEDED MAGNITUDE OF 10**70 BES'
C BES'
C REMARKS BES
G VERY SMALL VALUES OF X MAY CAUSE THE RANGE OF THE LIBRARY BES'
C FUNCTION ALOG TO BE EXCEEDED BES'
C X MUST BE GREATER THAN ZERO BES'
C N MUST BE GREATER THAN OR EQUAL TO ZERO BES'
C BES'
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED BES'
C NONE BES'
C BES'
C METHOD BES'
C RECURRENCE RELATION AND POLYNOMIAL APPROXIMATION TECHNIQUE BES'
C AS DESCRIBED BY A.J.M.HITCHCOCK,'FPOLYNOMIAL APPROXIMATIONS BES'

C TO BESSEL FUNCTIONS OF ORDER ZERO AND ONE AND TO RELATED BES'
C FUNCTTONS', M.T.A.C., V.11,1957,PP.86-88, AND G.N. WATSON, BES'
C 'A TREATISE ON THE THEORY OF BESSEL FUNCTIONS', CAMBRIDGE BES'
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C UNIVERSITY PRESSv 1958v P. 62 BES
C DES
C 4 1s0B

C BES
SUBROUTINE BESY(XPNPBYPIER) DES

C DES
C CHECK FOR ERRORS IN N AND X D ES
c DES

IF(N)ISOPlOPlO DES
10 IER=0 D ES

IF(X)190p190v20 DES
C DES
C BRANCH IF X LESS THAN OR EQUAL 4 DES

C20 IF(X-4*0)40,40,30 DES

C DES
C COMPUTE YO AND Y1 FOR X GREATER THAN 4 DES
C DES

30 Tl=4*0/X DES
T2=Tl*Tl DES
PO=( (((-.0000037043*T2+.0000173565)*T2-.0000487613)*T2 DES
1 +,00017343)*T2-.001753062)*T2+.3989423 DES
Q0=( U ( .0000032312*T2-.0000142,078)*T2+.0000342468)*T2 DES
1 -.0000869791)*T2+.0004564324)*T2-.01246694 DES
Pl=( (((..0000042414*T'2-.000020O920)*Tr2+,O000580759)*T2 DES
1 -.000223203)*T2+.002921826)*T2+.3989423 DES
01=((((-.0000036594*T2+.00001622)*T2-.0000398708)*T2 DES
1 +.0001064741)*T2-.0006390400)*T2+.03740084 DES
A=2#0/SQRT(X) DES
B=A*T1 DES
C=X-s7853982 DES
YO=A*PO*SIN(C)+B*00*COS(C) DES
Y1=-A*P1*COS(C)+B*01*SIN(C) DES
00 TO 90 DES

C DES
c COMPUTE YO AND Y1 FOR X LESS THAN OR EQUAL TO 4 DES
C DES

40 XX=X/2# DES
X2=XX*XX DEE
T=ALOG(XX)+*5772157 DES
SUM=04, DEE
TERM-T BEE
YO=T DE,

*DO 70 L=lr15 BEE
* IF(L-1)50i.60,50 BEE

50 SUM=SUM+1 ./FLOAT(L-1) BEE
60 FL=L DEE

TS=T-SUM BEE
TERM=(TERM*(-X2)/FL**2)*(l1-l./(FL*TS)) BEE

70 YO=YO+TERM BEE
TERM = XX*(T-#5) BEE
SUM=0. BEE
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S~DES

YI=TERM 
DES

DO 80 L=2,16 
DES

SUM=SUM+I*/FLOAT(L-1) 
DES

FL=L 
BES
DES

FLl=FL-BE
TS=T-SUM 

DES

TERM=(TERM*(-X2)/(FLI*FL))*((TS-,5/FL)/(TS+o5/FL1)) 
DES

80 yI=YI+TERM 
DES

P12=#6366198 DES

YO=PI2*YO 
DES

Y1=-P12/XF'P12*Y 
BES
DES

C CHECK IF ONLY YO OR Y1 IS DESIRED 
DES

C 
DES

90 IF(N-1)100,lO
1 3 0  

DES
DES

C RETURN EITHER YO OR Y1 AS REQUIRED 
BES

C DES

100 IF(N)110,120,ll. 
DES

110 BY=YI 
BES

GO TO 170 
DES

120 BY=YO 
BES

60 TO 170 BES
DES

C PERFORM RECURRENCE OPERATIONS TO FIND YN(X) DES

C 
BES

130 YA=YO 
DES

YB=Y1 
BES

K•l BES

140 T:=FLOAT(2*K)/X 
DES

YC=T*YB-YA 
DES

IF(ABS(YC)-i.0E70)145,145,141 
DES

141 IER=3 
DES

RETURN 
BES

145 K=K+l 
DES

IF(K-N)150,160,150 
DES

150 YA=YB 
DES

YB=YC 
BES

GO TO 140 
DES

160 BY=YC 
BES

170 RETURN 
DES

180 IER=1 
DES

RETURN 
DES

190 IER=2 
DES

RETURN 
DES

END DES

C E SUBROUTINE BSLJZ(X , FJ , NMAX , A , ND , IERR r FJAPRX r RR)

C THIS IS ONE OF THREE ROUTINES, 'BSLJZ', 'BSLIZ' AND DBSCJZm'

C BASED ON ALGORITHM 236 FROM 'COMMUNICATIONS OF THE A.C.M°o,

C AUGUST 1964. THIS ONE EVALUATES THE BESSEL FUNCTIONS OF THE

(; FIRST KINE FOR REAL ORDERS AND NON-NEGATIVE REAL ARGUMENTS.
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C

C 'rHE PARAMETERS ARE DIESCRIBED AS FOLLOWS, WITH *(I)*, "(0)', AND
C "(I/O)' INID:CA'TINGv, RESPECTIVELY, THAT A PARAMETER IS TO BE SET ON
C ENTRY, WILL BE SET BY THE: ROUTINE, OR BOTH :
C
C *** ALL PARAMETERS EXCEPT "ND' , "IERR* , 'NMAX' ARE ***
C *** SINGLE PRECISION REAL. NUMBERS OR ARRAYS.
C
C (I X THE (NON-.NEGATIVE) ARGUMENT TO THE BESSEL FUNCTIONS.
C (0) FJ .. AN ARRAY IN WHICH THE VALUES OF' THE BESSEL FUNCTIONS
C ARE STORED, AS FOLLOWS: LET ,J(X;B) DENOTE THE VALUE
SC ~OF'THE BESSEL FUNCTION OF ORDER B WITH ARGUMENT X.

THEN, FOR I = I rTO ABS(NMAX)+I,
G FJ(I) = J(X;A + (I-1)*SIGN(NMAX))
C (I) NMAX REFER TO "FJ'.

C (1) A ... REFER TO "F'J'. NORMALLY, 0 = A ":' 1, BUT THE ALGOR-"
C ITHM WORKS, WITH SOME LOSS OF' ACCURACY, FOR A ::: 1.
C 'EE: T'HE PROGRAM NOTES BELOW.
C (I) ND .. THIS GIVES THE NUMBER OF SIGNIFICANT FIGURES OF'
C ACCURACY DESIRED IN THE FUNCTION VALUES.
C (0) IERR .... TrIvS IS AN ERROR FLAG WHICH IS SET TO 0 IF THE
C INPUT F'ARAMETERS ARL OKAY, AND TO SOME POSITIVE
C VAILUE IF ONE OF THE PARAMETERS IS INVALID. REFER
C TO THE ERROR EXITS AT 'FITHE END OF' *THE CODE FOR A
C DETAILED LIST OF "lHE: VALUES OF IERR M
C (0) F,.JAF'IRX A SCRATCH ARRAY USED BY THE ROUTINE. IT MUST HAVE
C AT L.EAST ABS(NMAX)+1 ENTRIES.
C (0) RR .. ANOTHER SCRATCH ARRAY. IT TOO MUST HAVE AT LEAST
C AES(NMAX) f:t ENTRIES
C

C OTHER ROJUTINES C-AL.L.L': ( E * INDICATES A LOCAL ROUTINE )
C )K NBS01Z .... INVERSE FUNCTION OF' XLO)G(X)
C 11 UNDERZ ... ROUTINE: TO CONTROL UNDERFLOW INTERRUPTS ON THE IBM 360.

C MGAMMA -- GAMMA FUNCTION FROM THE IMSL. LIBRARY.
C ALOG ... 0LGA RITH M
C ABS -- ABSOLUTE VALUE:

C MOD ri .. REMAINDER
C AMAXI. MAXIMUM OF 2 REALS
C
C NOTES##
C THE METHOD OF' COMPUTATION IS A VARIANT OF THE BACKWARD
., RECURRENCE ALGORITHM OF J.CPF'.MILLER (REFERENCE 1). THE
S C 'PURPORTED ACCURACY IS OBTAINED BY A JUDICIOUS SELECTION
C OF THE INITIAL VALUE 'NU* OF THE RECURSION INDEX (REP-
C RESENTED IN THE CODE BY THE VARIABLE "XNU"), TOGETHER
C WITH AT LEAST ONE REPETITION OF' THE RECURSION WITH 'NUa
C REPLACED BY 'NU"+5. NEAR A ZERO OF ONE OF THE BESSEL
C FUNCrIONS, THE ACCURACY OF' THAT PARTICULAR BESSEL FUNCTION
C MAY DETERIORATE TO LESS THAN "ND' SIGNIFICANT DIGITS. THE
C ALGORITHM IS MOST EFFICIENT WHEN X IS SMALL OR MODERATELY
C LARGE.
C 250i ,,



1C THE ABOVE: PARAGRAPH IS TAKEN FROM GAUTSCHI'S PRESENTATION
C OF' ALGORITHM 236 IN C.A*CM. THE SELECTION OF THE INITIAL
(C *NUN IS DONE: WITH THE AID OF' THE FUNCTION NBSOIZ, ALSO
C BY GAUTSCHI (AND CALLED 'T" BY HIM)* IN THIS CODE, THE
C FOLLOWING SPECIAL CASES HAVE BEEN ADDED:
C A. X=O WHEN NMAX : 0 OR A=O
C B. A=O ANID NMAX -4: 0
C C. A > 1 : THE ALGORITHM WORKS IN THIS CASE, BUT THE
C. INITIAL CHOICE OF 'NU' IS NO LONGER
C OPTIMAL, AND SOME ACCURACY IS LOST. SIMPLE
C TESTS INDICATE THAT ONLY A FEW DECIMAL
C PLACES ARE SACRIFICED AT WORST. A LIMIT OF
C ABIG" IS PLACED ON A TO AVOID OVERFLOW IN
C 'THE GAMMA FUNCTION. TO AVOID COMPLICATIONS,
C NMAX IS REQUIRED TO BE NON-NEGATIVE IF A > 1.

C REF'ERE:NCES:
C 1. (:'3AUTSCHI, Wo 'RECURSIVE COMPUTATION OF SPECIAL FUNCTIONS',
C( UNIVE.RSITY OF MICHIGAN ENGINEERING SUMMER CONFER-
C E.NCES•, NUMERICAL ANALYSIS, 1963.
C

SUBROUTINE BSLJZ(X Y FJ , NMAX , A , ND , IERR P FJAPRX P RR)
REAL NBSO1Z
DIMENSION F J(1) , FJAFRX(1) , RR(1)
LOGICAL NEVEN P AFLAG
DATA ONE/1DO/ , TWO/2DO/ , HALF/o5DO/ v

* TEN/IODOi , SMALL/ID-15/ , CI/.73576D0/ Y
* C2/1.3591D0/ Y C3/2.3026D0/ Y C4/1.3863D0/ t

ZE RO/OhiO/ , ABIG/55DO/ , TWOP5/2.SDO/ ,
* ALEPH/3777 0000 0000 0000 0000B/, FOUR/4DO/ r
* (:5/2000 4000 0000 0000 OOOOB/

C INITIALIZE THE ERROR F'ARAMETE:R , TURN UNDERFLOW OFF , AND CHECK
C THE PARAMETERS FOR VALIDITY AND FOR THESE SPECIAL CASES:
C A. X=O WITH NMAX > 0 OR A=O
C B. A=0 AND NMAX 0
C
C THE CODE DELIBERATELY AVOIDS TESTING MORE THEN ONE THING IN EACH
C LOGICAL "lF" BELOW BECAUSE OF I.B.M. FORTRAN INEFFICIENCY IN THIS
C REGARD.
C

C IF' AI, NMAX MUST NOT BE NEGATIVE.

IERR = 0
CALL UNDERZ('OFF'vSAVE)
IF(A .LT. ZERO) GOTO 999
IF(A .GT. ABIG) GOTO 998
IF'(X *LT. ZERO) GOTO 997
IF(NMAX .GE. 0 ) GOTO 10
SIF(A *EQ. ZERO) GOTO 10

Al IF'(A *LE. SMALL) GOTO 996
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IF(A *GE. ONE ) GOTO 994
10 IF(X *GT. ZERO) GOTO 40

IF(NMAX .GEo 0 ) GOTO 20
IF(A .GT. ZERO) GorO 995

C IF NMAX O 0, NMAXT IS SET HERE SO THAT ONLY J(X;A) IS CALCULATED,
C THE LOOP FOLLOWING STATEMENT 800 THEN CALCULATES THE REMAININGC FUNCTIONS BY A SIMP'LE RECURRENCE, J

CIF A=O, NMAXT IS SET SO THAT J(X;A+N) N=O,...-NA*AR
C CALCULATED; THE CODE AFTER 800 THEN REVERSES THE SIGN OF EVERY

C 01ER ONE.

C WE FIRST HANDLE THE CASE X=O

20 NTEMP = IABS(NMAX) + 1
DO 30 I -1, INTEMP

30 FJ(I) = ZERO
IF(A .EQ. ZERO) FJ(1) ONE
GOTO 1000

C ** ****
40 AFLAG = (A .EQ. ZERO) .AND. (NMAX *LT. 0)

NMAXT = NMAX
IF(NMAX *LT. 0) NMAXT = 1
NTEMP = MAXO(NMAX+1,1)
IF(.NOT. AFLAG) GOTO 60
NMAXT = - NMAX
NTEMP = NMAXT + 1

60 EF'SLON = TEN**(-ND)/2
DO 80 I = INTEMP

80 FJAFRX(I) = ZERO
CALL MGAMMA(ONE+A , RESULT v IER)
SUM = (X/TWC)+ A/RESULT
SUM = C3TND + C4
R = ZERO
IF(NMAXT *GT. 0) R = NMAXT * NBSOIZ(HALF*D1/NMAXT)
S = C2 * X * NBSO1Z(CI*D1/X)

C THE RECURSION INDEX 'NUO IS DELIBERATELY CALCULATED AS A FLOAT ING
C POINT NUMBER RATHER THAN AN INTEGER, AND ALL COMPARISONS WITH IT
C ARE DONE AS FLOATING POINT COMPARISONS.

XNU ONE + AMAXl(RS)
XLIMIT = XNU/2
TWOA = A + A
XN = ZERO
FL = ONE

C THE OUTER ITERATION LOOP STARTS HERE#
C
C
C THE FOLLOWING LOOP IS DONE ENTIRELY IN FLOATING POINT FOR

A • C EFFICIENCY,
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200 XN XN + ONE
FL FL * (XN + A)/(XN + ONE)
IF(XN *LT* XLIMIT) GOTO-200
OLDIFI. = FL
OLDXN XN

, C

N 2*XN
XN = N
NEVEN :!:: + TRJU
R ZERO
S = ZERO
"TEMPI =: TWO/X

C IN THE F:'OLLOWING LOOPY THE SUCCESSIVE VALUES OF 'R" ARE PARTIAL
C FRACTIONS OF A CONTINUED FRACTION.
C; * * * * * *

300 DENOM =: TEMFI * (A + XN) - R
IF(ABS(DENOM) *LE. SMALL) DENOM DENOM + SMALL
R = ONE/DENOM
FL.MBDA = Z.ERO
IF(.NtJ'I. NEVEN) BOTO 400
FL FL * (XN + TWO)/(XN + TWOA)
FLMBDA tFL. * (XN + A)

400 S = * (FLMBDA + S)
IF'(N L.E. NMAXT) RR(N) R
N N - I
XN XN - ONE
"NEVEN = #NOT. NEVEN

-IF(N f3E# 1) GOTO 300

FJ(1) -: SUM/(ONE + S)
II.7(NMAXr *EQ. o) GOTO 600
DO 500 N =INMAXT

500 FJ(N+I) RR(N) * FJ(N)
C** ***
C THE LATEST APPROXIMATIONS ARE CHECKED FOR IMPROVEMENT:

600 DO 800 N = INTEMP
IF(ABS(F'J(N) - FJAPRX(N)) *LE. ABS(FJ(N))*EF'SLON) GOTO 800
DO 700 M = 1,NTEMF

700 FJAPRX(M) - F'J(M)
XN = OLDXN
F'L = OLDFL
XLIMIT = XLIMIT + TWOP5
GOTO 200

800 CONTINUE
IF(NMAX *BE. o) GOTO 1000

C*W*W****
C IF NMAX:.O, WE HAVE FINISHED OBTAINING J(X;A) , AND NOW
C ITERATE TO FIND ALL' THE DESIRED FUNCTIONS.
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C FIRST WE CHECK FOR THE SPECIAL CASE A=O,

1F(*.NOTo AFLAG) GOTO 850
NMAXT = -NMAX + 1
DO 820 N = 2,NMAXT,2

820 FJ(N) - FJ(N)
GOTO 1000

850 FJ(2) =: TWO * A * FJ(I)/X -- FJ(2)
IF(NMAX *EQo -1) GOTO 1000

C THE FOLLOWING CODE IS A RENDITION OF THE LOOP
C DO 900 N 2,NMAXT
C 900 FJ(N+I) (2/X)*(A-N)*FJ(N) - F'J(N-1)
C
C WITH OVERFLOW DETECrION. AS SOON AS THE NUMBERS GET TOO BIG, THEY
C ARE SCALED DOWN (BY A POWER OF THE MACHINE BASE, SO AS TO AVOID
C' ILOSS OF' PRECISION) AND THE: CALCULATION CONTINUES. A SEPARATE LOOP
C TRANSFORMS THE SCALED VALUES TO THE CORRECT OUTPUT VALUES, SETTING

TOO-LARG1* ONES TO PLUS OR MINUS INFINITY.
C*****t

NMAXT -NMtAX + 1.
F'JNM2 FJ ( (1.)
F'JNM1 = 1:',.1(2)
rIMFPI TWO/x
OVE R ZERO
XNM.1 TWO

DO 880 N 3,NMAXT
F,JN 'MFI * (A- XNM1) * FJNMI F'JNM2
FJNM2 FJNM1
FJNM1 FJN
F'J(N) FJN
XNMI = XNMI + ONE
RR(N) OVER
J:t"(ABS(FJN) .LT. C5) GOTO 880
OVER = OVER + ONE
F'JNM1 = FJNMI/C5
FJNM2 = FJNM2/C5

8U.0 CONTINUE

IF(NMAXT *LE. 3) GOTO 1000
OVE':R ZERO
SCALE ONE

DO 900 N = 4,NMAXT
IF(OVER .LT. FOUR) GOTO 890
FJ(N) SIGN(ALEPHFJ(N))
GOTO 900

890 IF(RR(N) .GTo OVER) SCALE = SCALE * C5
FJ(N) = F',I(N) * SCALE
OVER = RR(N)
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900 CONTINUE
GOTO 1000

C ERROR EXITS FOLLOW. MEANINGS OF 'THE EXIT VALUES OF' "IERR' ARE:#
C 0 : NO ERROR
C I A <0

C 2 • A ABIG
C 3 X <0

C 4 0 NMAX .( 0 AND 0 .( A "( SMAL.L.
C 5 : X=O, NMAX .: O, AND A 0
C 6 : NMAX - 0 AND A I
C******

994 IERR I IERR + 1
995 IERR IERR + 1
996 IERR = IERR + 1I

998 IERR = IERR + 1

999 IERR = IERR + 1
1000 CONTINUE
C CALL. UNDERZ('S',SAVE)

RE:TURN
ENE,

REAL FUNCTION NBSO1Z(X)

C THIS IS A NUCLEUS FOR THE THREE BESSEL FUNCTION ROUTINES
C 'BSLJZ" F MBSLIZ" , 'BSCJZ' BASED ON ALGORITHM 236 FROM
C "COMMUNICATIONS OF' THE A*C.MN.'

C IT EVALUATES THE INVERSE FUNCTION OF X*LOG(X) FOR X 1>= TO AN
C ACCURACY OF ABOUT VONE PER CENT,
C FOR THE INTERVAL 0 := X <= 10 A FIFTH DEGREE APPROXIMATION IS
C USED, OBTAINED' BY TRUNCATING AN EXPANSION IN CHEBYCHEV POLYNOMIALS.
C FOR X ::- 10, A DIFFERENT APPROXIMATION IS GIVEN, AS CAN BE SEEN.

DATA C1/.000057941D0/ , C2/-.00176148D0/
*C3/.0208645r'0/ v C4/-.129013D0/
*C5/.85777L'0/ v C6/1.10125D0/ v
*ALPHA/. 775D0/ v TEN/IODO/

IF(X *GT. TEN) G0 TO 10
NBS01Z (((UC1*X + C2)*X + C3)*X + C4)*X + CS)*X + 06
R E TU R N

1. 'TEMF MP ALOG(X)--ALF'HA
TEMP2 r (AL.PHA-ALOG(TEMP1))/(1+TEMP1)
NBSO1Z = X/( (1+TEMP2)*TEMF'I)
RETURN
ENE,
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AXIAL TEST CASE

Inputs

K - 6.283185307 Yll - 1

A - .2 PHI - 30

B - .5 ZO - 1

NCYCLE - 40 RADIUS - 1

MMAX- 480

Outputs

Y12 = .3386E-4 mho 85.48 deg

DB - -. 8941

NORM PHASE - 131.84 deg.

CIRCUMFERENTIAL TEST CASE

Inputs

K - 6.283185307 YlI - 1

A- .5 PHI - 30

B- .2 ZO - 1

NCYCLE - 40 RADIUS - 1

MMAX -480

Outputs

Y12 - .1358E-3 mho 24.82 deg

DB - -.7734E+2

NORM PHASE - 71.18 deg.
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CHAPTER 4

MODAL CALCULATION OF SLOTS ON CONE

4.0 SLOT MODAL FIELDS

Expressions for the radiation fields from slot-excited

conical antennas were first obtained by Bailin and Silver (1956).
The fields were expressed in terms of normal-mode expansions us-

ing the orthogonal properties of the eigenfunctions. Although

some corrections modifying the first results appeared in the
literature (Bailin and Silver, 1956, 1957), the expressions for

the fields need additional examination. More recently Pridmore-
Brown and Stewart (1972) presented a more rigorous calculation

of the e-polarized electric field component of circumferential

slots. Their numerical calculation is based on expressions
derived from integral transform methods.

In this section, complete expressions of two potential func-

tions representing the modal fields will be presented for both

the circumferential and the radial slot. The electric field

components will then be obtained from the potential functions

and will be available for calculation of radiation patterns of
the individual slots or arrays of slots of any desired configur-

ation.

Figure 1 shows typical circumferential and radial slots and

the conical geometry. The usual spherical coordinate system
centered at the cone tip is associated with the structure. The

cone axis coincides with the z-axis of the rectangular coordin-
ates (x, y, z) associated with (r, e, *). Primes denote coor-
dinates of the apertures on the structure.

The two scalar potential functions in question are R TE and
fTM, TE and TM to the radial direction, respectively. For an
assumed time dependence of exp (Jwt) both satisfy the wave
equation:
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(V2 +k 2 ) k I- 0. (1)

The electric and magnetic field components are then conveniently

given by superposition of TE and TM partial fields obtained from

the potential functions as follows:

TM - Partial Fields:

E -L = rII(r +k(r•ITM) Hr=

2
TM + 1 9 TM H M H TM

E- Partial Fields:
OH TE) + kZ T M

ErT M (r Mr (2)r( (.T

(r " H r sin la

11 2~ TMT
E, -r a -in 0 7-a0-k4rrI)(3

E~ 0 HI02 (r 11 TE) H.k=21 97 TE

r r

r sing
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For an arbitrarily shaped source excitation the expression for I
the TM is given by Bailin and Silver (1956) (There is a
sign in their expression.)

0 0~ l (jk) (Z. + 1)P. (coso 0)
iTM 1

OM 0 0
r z (4)

Z 2

Sf f(r'- do') cosm 1W' -j).(k r < )h (k r >) r' sin0o dr' dj'

ri 
.

where r>, r< symbolizes the larger and smaller of the coordin-
ates r, r', respectively. P,(cos 6) is the associated Legendre
function and

(kr) r J, +Z 1 (k r) (5)" H(2)

)(kr) + I (k r)
Zkr (6)

are the spherical Bessel and spherical Hankel functions, respec-
tively. JV is the Bessel function of the first kind and order
v and H 2 ) is the Hankel function of the second kind and order
v. V is the Kronecker delta functionom

1 m-0

om 0 (7)0 M 00

while the vi are the roots of the equation
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Pm (cos O 0 (8)

The function fl(r', 0') in equation (4) is the electric field
source excitation in the r direction. Following the general
procedure described by Bailin and Silver where the boundary con-
ditions are applied in conjunction with the Lorentz reciprocity

theorem to the modal fields, an expression for RTE is obtained.
The TE scalar function with arbitrary source excitation is given

by,

OD 00 (22 + 1) PVT(cos 0)
"TE 1 1 1 1

M=o 1  =4 (1+ 60e 1 oi +In a

r2, = 1

Ml jiafl(r ,, r l (r, r') sin ( -i)dr' d)'

r1  .

where rk(r , r') (10)

and n is the free space wave impedance A-'-c • The Vj are
the roots of the equation
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!:a p m (Cos eO
c- 0(11)

and f 2 (r', 0') is the E component of the source excitation.
All other quantities are as defined for the TM case. It is

interesting to observe that, unlike the TM mode, the TE mode is

excited by both the r- and 0- components of the source excita-

tion in the aperture. Conversely, the r- component of the
source excitation excites both the TM and the TE modes. It
should also be noted that the expression in Equation (9) differs

from the expression given by Bailin and Silver (1956) in the
expression for rI (r, r') and a common factor of 1/sin e0 .

The modal functions and the corresponding field components
from particular aperture configurations on the cone structure

with appropriate field excitations are given in Sections 4.1 and

4.2 below:

4.1 Circumferential and Radial Slots

Only circumferential and radial slots are considered.

Inclined slot values can be interpolated from these two.

4.1.1 Circumferential Slot

A narrow circumferential slot of width 2w<<X is considered

as shown in Figure 1. The narrow slot has an azimuthal length

d - 20o a sin e0 where 200 is the azimuthal angle subtended by

the slot, e0 is the cone exterior angle measured from the axis,

a is the distance from the cone tip to the center of the slot

and X is the operating wavelength. The slot is assumed to be

excited by a voltage V0 across its center and has a resulting
field across it in the r direction given by
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E r,-' F•( 0, _ 0s)i
Er V0 cos 20 s-° _ (r' - a), .1' " 0sJ< 00

0~~~ Io s> 00
(12)

where 6 (r' - a) is the Dirac delta function.

Substituting the expression of Er(r', 0') in Equations (4) and
(9) for fl(r', 0') and integrating over the primed coordinates,
we obtain the explicit expression for RTM and 11TE The function

f 2 (r', 0') is set equal to zero in the TE case, as only the Er
component of the source excitation is assumed. Thus,

TM 0 (j k aV ) (2 vi+l) Ps. T(cOs 0) (2)a( =p(cos. 
(kr<) h., (kr>)

mom=0 i=l +P cs0 0

I' =)V

j

Zk a sinG 9 Mi~
Oc os .s n(4 - s)

o (13)
(k a sin Go) 2 m2

and

S nl
IIT r (Z P + 1) Ps' ! (Cos 0)

TE 11 Z M
mO i=1 ) P'  (cos8O) 0="(TO °m + il(Pi + 1) sin@ go!O ":i

-Zka sing 0 cos( (-Z MWa uiSinnm(4

orI (r, a)
(k a sino) 2  -M (14)
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where r (r, a) = (15)

j v (kr) - (r' (k'.

a r' a

The radiation fields are readily found by substituting the

expression of II1 and 1TE corresponding to r>a into Equations

(2) and (3). On using the asymptotic expansion for the spher-

ical Hankel functions,

h v 2) (k r) j+/ e-j k r (16)hV kr rrkr

k r-*

and noting that

a (r hv 2  (kr))-jV e-ikr (17)

the following expressions are obtained for the electric field
components :

S V -j (kr - w/4) 2kasin 0oOs MW sin)

m=0 r (I + 6 a (kasin0 - m2 Co M

(18)

) + jm2 M
W +sinG 0osin 0 Pz0

where P 0 • •v 1 3(ka) (Cos (19)
14 . (o, 0) 0C= 0

oo

i ., N4
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It is pointed out that the e-dependence is represented by

the Legendre function 12 (cos e) instead of m (cos e) as
originally derived. This choice simplifies the evaluation of

the Legendre function in the digital computer and is preferred.
Also, except for a constant factor of l/w, the expression for

E0 agrees with that reported by Pridmore-Brown and Stewart
(1972) derived by the Kontorovitch-Lebedev transform method.

4.1.2 Radial Slot

A narrow slot of width 2 w<<circumference is assumed to be
positioned along a generatrix of the cone and extends from r1 to

r2 as shown in Figure 1. It is further assumed that the length
of the slot, (r 2 - r,), is such as to allow definition of the
ends of the slot by constant 0'. The slot is excited by a
voltage V6 resulting in an electric field in the O-direction

given by

'g(r')6(0')
E -V 0  r'sin 0 (24)

The function g(r') describes the variation of the source

excitation in the r' direction. Clearly, since f, (r', 0') - 0,
i.e., no source excitation in the r'-direction, the TM mode of
the potential function is not supported. The TE mode, on the

other hand, is obtained only from the contribution of f 2 (r', 0')
in Equation (9). Substitution of Equation (24) into Equation
(9) results in the following expression for RTE for the radial

slot:
TE 'O "O (z '! + 1) P' (cos 0) cosrn4S (r) -P (mC_ too I • r( 0)

rti P9 (f s 0-0
r i asin 0° + 6' )- 0

I

(Z5)

'j (kr'2<)h , (k r6>) d r'
r r,
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The electric field components are obtained from Equation
(2) operating on Equation (25) giving:

V ej(kr -7/4) co

r= osin 0 n ms-in0 m0 (Z6)

V ' e "j(kr -I/ 4 ) CD7V 0 e CojM (27)
r sin 0 0 0 or)

where -k
CO P (~~Cos 9 1 k '"'I - V.. 2 V..(.jr

PO =Ji 2 Ski dr' (28)
P- (Cos)(cosO) OQ °

= • --- P /2 (c-(cosO) .),''&LL ) dr' (29)

i=1 ____- 1/20 1

i

and the vi are the roots of the equation

-m
SPv -1/2 (cos 6o0 - 0 (30)
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4.2 COMPUTATIONAL PROCEDURES

4.2.1 Legendre Functions

The calculation of radiation patterns from slots on a cone

requires the evaluation of the associated Legendre function P m

(cos 0) and its derivatives with respect to v and 0. For

numerical computations, however, it is more convenient to work

with the related function P-m (cos 6). There are numerous
representations available in the literature which can be used

for the numerical computation of the function p-m (cos e). How-V
ever, the different representations vary in computational pre-

cision and are often expensive in terms of computer time. In

addition, some representations are only valid for specific ranges
of their independent variables and the choice must be made with

extreme care.

We have chosen the expansion (Erdelyi, 1953, p. 147):

00 (12 )k (1 /2 - m) k
Pn(Cos 0) r(,-M + 1) (-F Ik

i (01 ('o k! (2 sin Q)k (t+3/Z)k
P•r~~sQ - ,i 0r -n k=ok

sin [(+ k + I/Z) 0 + 7r (I/2 k + l/Zm + 1/4)] (31)

whre(bk r r b+k)(b)

where (b)k ( and < 0 < 5 g- ti compute the function

for all 0 > radians by increasing the degree of the:0 for ll O >72 T 2'

function to at least v - 72 + m prior to the use of the expan-
sion in the numerical computation. The value of the function of

the desired degree is then obtained by backward recursion. This
in effect extends the usefulness of the expansion for numerical9
evaluation of the function to a new range for 8, < e
< w radians. The validity of the extension in the lower limit
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was verified by comparing the calculated values in this e-range

with calculated values from an expansion suitable for small

values of 0.

The verification that the asymptotic expansion of Equation

(31) gives satisfactory results for e > 5w/6 under the above

modification is somewhat more involved. As stated earlier, there

are many representations of the associated Legendre functions,
but only certain ones will lead to satisfactory results. Since

the value of the argument of the associated Legendre functions

of interest is near -1, the representation of the associated

Legendre function P0 (cos (r -a)), where a = 7- 6, developed
by Hille with small modification (Gray, 1953) was selected as
an alternate representation of the function and suitable for

computation. The representation used for computation of the

zeroth order and for O<v<2 and small a is

00

pO o(• • Z sin----- log (sinar/21 + cosvi PV (o a

v t

+ sinvr (.)r (+r)
r ~ (V--r)F!

r~o

•(v + rH}+ (v .0 - 241(r)j (sin / 2 r

where (32)

o~ (cosa~) = (-)r (v~r)- (sin *12)
P V [-v-r) 0 r! r!

r=o

and

(log ))
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is the logarithmic derivative of the factorial function.

The series in Equation (32) converges very rapidly for

O<v<2 and allows great computational precision. All other

values of Pm (cos 0) and (aPm (cos e)/D8), 135 0 ,<0<1800 , are then

obtained by employing the recurrence formulas (Erdelyi, 1953,
p. 161) given in Equations (33) and (34). The recurrence rela-

tionships for v and m are, respectively,

P 1 [ V+1)xPr(x) - (v+M)P. W(x) (33)V+1 W× (V-M+l) (V +

and

prn+ 1 (V-l, mlx)l- (v+(x)P=_ _X) (34)• ___P- (vm)P~x) ~

The expression of Equation (32) was programmed together

with the recurrence relationships of Equations (33) and (34) to

obtain values of the associated Legendre functions. In the

range of v between 0 and 2 the computed values using Equation

(32) agreed very well with computed values using the modified
expansion of Equation (1). As the recurrence relationships

were used to obtain values for higher order and higher degree

functions, however, the agreement was no longer maintained. It

appears that the recurrence relationships lead to imprecise
values of the desired functions. Since the two rapresentations

give results in excellent agreement for small values of v in the

0-range of interest, it is concluded that the modified expansion

of Equation (31) gives satisfactory reaults for all values of v

of interest in the same 0-range.
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From the expressions of the field components pvive in

Section 4.1 it is seen that the calculation of radiation p^tterns
requires the evaluation of the function e(cos e) and its deriv-

atives with respect to .# and 8. As stated previously. we have
cho.en to work with the function P-U (cos 0) rather than P •V V

(cos 8). The two functions are related by ('rdelyi. 1953. p.l&A):

P m cos 0) cos(mow) -+ a + !13 P-M (cos 0) (35)

where r(k) is Eule's gamma function. Using the above relation-

ship, it is easy to show that the ratio

3pm (cos e)

(36)
a pm (cos eO)

can be replaced by

a P-m(cos 9)

(37)
Sp~m(cos 00)

aV V 0

in the expression of the functions nTM and 1TE. From the equa-

tion it is also evident that the roots of pV, (cos e0) are also
roots of P-m (cos a0). The same holds true for the derivatives
of the two functions with respect to 8. Derivatives of the
Legendre Functions with respect to 0 are computed by the recur-
rence formula (Erdelyi, 1953, p. 161).

dm c ~
-A-Pv(cos 8) M- os P V P(Cos 0) + Pl *l(Cos 0) (38)
do sin e
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The derivatives U Pm are computed numerically using the formula
(Carnahan et al, 1969):

d 1 V
a-- f(vd) L • f(vo) -8 f(vil + 8f(V2 ) - f (v3)] (39)

where vi . v0 + i h, h is a selected increment in v, and f(vi)

are the values of the Legendre functions of order m and degree
Vj, P,)(Cos 8).

i

4.2.2 Spherical Bessel Functions

The computation of the fields involves the spherical Bessel
function Jv (x) and the spherical Hankel function h(2)(x). Since

V V
these functions are related to corresponding cylindrical func-

tions, Equations (5) and (6), the cylindrical functions are com-
puted instead. For the Hankel function, h 2 (x), the asympto-

V
tic expansion has been used.

The computation of the radiation field from a slot along a
generator of the conical surface requires the evaluation of the
integral

r 2

g(r) J (k r) (
- d r (40)

kr

A series solution of the indicated integral when g(r') is a
polynomial in r' is obtained from the formula (Abramowitz &
Stegun, 1956): (41)

+ r( + k)

f t (t)dt . ,7:X r +*+ 3+ k)
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with Real part (V + v + 1)>O. Alternatively, the indicated

integral may be evaluated with sufficient accuracy by known

numerical integration techniques. The latter method, using

Simpson's "3/8 Rule", has been chosen for the present program.
Either method, however, requires the evaluation of the Bessel

function J (x).

4.3 Analysis of Computed Element Patterns for Slots on a Cone

The convergence of the modal series representing the far

fields of the circumferential and radial slots was examined by

looking at the pattern change in the sequential summation of

higher order modes. In each case, patterns were calculated for

every 100 in azimuth and every 50 in elevation for both the
0-polarization and the 0-polarization. However, elevation cuts
were plotted only at 0 - 00 and 0 - 180 degrees. These two cuts

have been plotted on an extended 0 scale to give a single view

of the elevation cut. Since the cone under study has a 100 half
angle, the position of e - 800 was selected for azimuthal cuts.
This corresponds to the broadside of the conical surface. Figure

1 shows the relative position of slots in the coordinate

system.

The patterns to be shown subsequently have been normalized

to the largost value computed for both polarizations for the
particular modal sum or individual mode. For convenLence, we

shall refer to the individual mode patterns by the small letter
"m" and to the sum patterns by the capital letter "1M".

4.3.1 Radiation Patterns of Circumferential Slots

A slot of azimuthal length d - X/2 located at ka = 39 radi-

ans(k - 2 w/X) from the tip of the 100 half angle cone was sel-

ected for pattern computations. This particular location was

selected because it corresponds to a case of a circumferential

slot at 8.15 GHz and 9 inches from the cone tip previously
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investigated experimentally (Pridmore-Brown & Stewart, 1972).

The computed results will be compared with the available exper-

imental results where appropriate. The slot is assumed to be
excited by a voltage across its center and has a resulting field

acros3 it in the r direction given by Equation (12). Near the

tip of the cone this excitation function may be represented by
a few terms of a cosine series with appropriate coefficients.
A greater number of terms are required for adequate representa-
tion of the same function when the slot is located many wave-
lengths away from the tip. It will be seen later that there is

a correlation between the number of expansion terms in the exci-
tation function and the number of terms required for convergence

of the modal series representing the fields. However, this

correlation is not easily determined beforehand. The dominant
TE1 0 mode of a rectangular waveguide may be used to excite the

slot.

Figures 2 and 3 show the e-polarized pattern of the
lowest two modes, m - 0 and m - 1, respectively, for 0 - 00 and

S- 1800. As expected, the modal patterns for 0 - 1800 are
identical to the 0 - 00 patterns, since the variation of the

fields in the 0-direction is purely sinusoidal. The pattern
corresponding to the m - 0 mode shows significant variation at
broadside with extrema at e - 00 and 0 - 0 - 170 degrees. The

peaks at e - 120 and 0 - 300 of this particular mode are parti-
cularly noteworthy. In contrast to the m - 0 mode pattern, the
m - 1 mode pattern of Figure 3 exhid its a relatively small and
smooth variation at the broadside region. The maximum now occurs

at 0 - 00 with a pronounced first minimum atb - 150 followed
by a local maximum at 0 - 25 degrees. Also, the pattern is about

1 dB down at O - 8o.

The total or sum 0-polarized pattern of the first two modes,

M- 1, is also shown in Figure 2 for 0 -0° and for 0-1800
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together with the I- 2 pattern. The addition of the second
mode, m- 1, to the first mode, in effect dominates the result-
ing pattern. The effect of the m - 0 mode, however, is still
evident in the region near the cone axis with a -3.5 dB value at
6 - 1 degree. The forward-back difference varies from 1 dB at
6 - 10 to 9 dB at e - 800 and to 14 dB at 0 - 0.

Higher order mode sum patterns, M - 3 through M - 5, for
both 0=00 and 0-1800 are shown in Figure 4. In each case,
the sequential summation of a higher order mode in the sum
series effectively decreases the variation at the broadside re-
gion with the average level of the 0 - 00 patterns at -9 dB for

M - 2 and -4 dB for M - 4. Addition of the m - 5 mode raises
the pattern level only slightly at broadside while in the vicin-
ity of 0 - 400 and e - 1500 changes of about -1.5 dB are noted.
The next significant changes in the pattern are seen in the

M - 7 modal sum shown in Figure 5 for 0-00. At the same
time, the 0 - 1800 pattern shows that the pattern level decreases
with increased modes at the broadside region while maintaining
the level of about -5.5 dB and -15.5 dB at 0 - 10 and t - eo,
respectively.

The addition of the next five modes, m - 8 through m - 12,

to the M - 7 total pattern gives the total pattern of M- 12.
The patterns for this case are also shown in Figure 5 . Com-
parison of this pattern with the M - 7 total pattern ahows that
the addition of these five modes results in a decrease of the
pattern level of less than .4 dB in the range of 6 - 400 to e -
140 degrees. Similarly, the 0 - 1800 pattern for this case
shows only a slight decrease in the same range. There is no
significant change to either pattern outside this range.

To study further effects of the higher order modes to the

total pattern, t:he m - 13 mode was added to M - 12 pattern.
The resulting M - 13 sum pattern in elevation is shown in Figure
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6 . There are no noticeable changes in either the elevation
or the azimuthal patterns with the addition of the m - 13 mode.
It should be pointed out, however, that the normalized e-polar-
ized pattern of the m - 13 mode, has its maximum at e - 90
degrees rather than at broadside. This is a consequence of the
8-dependence of the associated Legendre functions and their
derivatives. This also explains why only the broadside range of
the pattern is changed with increased higher order modes. Thus,
it is concluded that about 13 terms of the modal series are
required to correctly represent the radiation from this slot
configuration. Furthermore, the tip diffraction effects are
generally accounted by the lower order modes of the series.

4.3.2 Radiation Patterns of a Radial Slot.

In the present section we consider the narrow slot along a

"generatrix of the cone which was described in Section 4.1.2.
For the present study the length of the slot has been chosen
as one-half wavelength at the operating frequency. The cone
characteristics and the operating frequency, as well as the lo-
cation of the center of the slot remain the same as for the
circumferential slot described in Section 4.3.1. The slot is
excited by a voltage Vo resulting in an electric field in the
O-direction given by

E coo (kr' - ka) (') (42)
0 - r' sin 0

It is interesting to follow the convergence of the modal
series of the radial slot in the same manner that was done for
the circumferential slot. We first look at the M - 0 and M - 1
mode patterns of the 0-polarized components at 0 - 00 depicted
in Figure 7 . The effect of the cone's tip on the modal pat-
terns is clearly seen by the behavior of the patterns near the
axis of the cone. This effect continues to persist also through

281I -I
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M - 5. It is evident from the Figures that the total patterns
are dominated by the m = 1 mode. Both the patterns for 0 - 00

and 0 - 1800 exhibit a local maximum at about 20 degrees from
the axis. This maximum moves toward the broadside region with
increased number of terms of the modal series. Also, the higher
order total patterns are increasingly narrower.

The M = 12 for 0 = pattern shows a minimum of -18 dB at
e M 10 and has its maximum at exactly broadside. The pattern
for 0-1800 ot the same case dips to a minimum near 80= 150 and
then increases to about -14 dB at 8 - 100 degrees. Both patterns
decrease rapidly near 8 - 80. The irregularities noticed in all

the previous total patterns are not present at all in the M - 12
patterns.

Azimuth patterns for the radial slot are not shown. How-
ever, all of the low order sum patterns for both polarizations
exhibit considerable variation in azimuth. This can be viewed
as an indication of the slow convergence of the modal series and
the requirement for additional terms in the series representation.
On the other hand, the M - 12, 0-polarized total pattern shows
a smooth transition from 0 dB at 0 - 00 to -13 dB at 0 - 1400
while maximum of the 8-polarized pattern occurs near broadside

at about -17 dB.

From the above considerations, it appears that move than
eight but less than fourteen terms of the modal series are re-
quired to represent the fields of this slot configuration cor-
rectly. The upper limit was further checked by looking at the
M - 13 patterns and comparing them with the M- 12 patterns.
There were no noticeable changes in either the elevation or the
azimuthal patterns.

283

0 . • - .- _ _- -.. . .



4.4 Measured Patterns

The computed patterns, using the first fourteen modes of

the modal series, have been normalized to the largest value com-

puted for both polarizations for either the circumferential or

radial case. Computed and measured elevation cuts are shown on
an extended 6 -scale to give a single view of the elevation cuts.
Since the cone under study has a 100 half-angle, the position of
0-800 was selected for the computed azimuthal cuts. This corres-
ponds to the broadside of the conical surface.

Measurements were made on an experimental 100 half-angle
cone at a frequency of 10.38 GHz with the slots 6.22 wavelengths
from the cone tip. This slot location corresponds to ka - 39
radians from the cone tip for which a complete set of patterns
have been computed with the modal series program. In both the
circumferential and the radial case, the slots were fed by a
half height X-band waveguide. Where possible, computed pattern
values are shown on the same scale for comparison.

4.4.1 Radiation Pattens of &1rcumterential Slot

Figure 8 shows the 0-polarized patterns for 0 - 0 and
0 - 1800 together with corresponding computed patterns. There
is excellent agreement between the measured and computed pat-

terns throughout the cone tip region and the broadside region

where both patterns are quite uniform. The measured pattern

drop-off for 9 - 00 and 0 greater than 1400 is due to shadowing

at the base of the cone by the absorbent material in which the
cone was set. Similar drop-off is observed in the measured

pattern for 0 - 1800 for the same 0 values except that this is
not as noticeable since the computed pattern in this region is
at a much lower level relative to the U " 00 pattern. Measured
0-polarized patterns are also shown for P - 450, 9 - 2250 and
0 - 900, 9 - 2700 in Figures 9 and 10 , respectively. In

Figure 10 the corresponding computed pattern values are also
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shown. There appears to be a 20 difference in the position of
the null between the computed and measured patterns but this is
probably caused by inaccurate alignment between the transmitter
and receiving antennas. This also explains the slight asymmetry
in the measured pattern. The shadowing by the absorbent material
for 6 greater than 1400 is evident in all measured patterns.
The above two patterns also show that the pattern level at 0 -

135 is approximately 10 dB below that of 0 - 900.

The 0-polarized patterns in elevation are shown in Figures
11 through 13 for the same azimuth positions as for the e

polarized patterns. Azimuthal patterns for both polarizations
at e - 800 are shown in Figure 14 . Excellent agreement is
seen between computed and measured patterns of Figures 13 and

14 considering the fact that computed pattern values were
made every 5 degrees in 0 and 10 degrees in 0.

4.4.2 Radiation Patterns of Radial Slot

The tip section of the 100 half-angle cone was modified to
accommodate a radial slot 6.22 wavelengths from the cone tip.
The edges of the waveguide were carefully taped to obtain one-
half wavelength at the operating frequency.

The computed patterns shown together with the measured pat-
terns have been normalized to the largest value computed for
both polarizations using the first fourteen modes of the modal
series. This largest value was computed at the field point
P(0,e) - P(0°, 800). As expected, this point is broadside to
the conical surface and lies on the plane normal to the conical
surface and containing the radial axis of the slot element. For
meaningful comparison of measured and computed patterns, the
reference level of the measured patterns was also taken at
broadside at 0 - 00.
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Figure 15 shows the 0-polarized patterns for 0 - 00 and 0 -

1800 together with corresponding computed patterns. There is

excellent agreement between the measured and computed patterns
throughout the cone tip region and the broadside region where

both patterns are quite broad.

Measured 0-polarized patterns are also shown f6r 0 - 100,

0-1900, 0-400, 0-2200, -900 and 0 - 270° in Figures 16

and 17 Computed pattern values are also shown in the same

figures for comparison. Figure (17) shows a 30 difference in

the position of the null between the computed and measured pat-
terns but this is probably caused by misalignment between the

transmitter and receiving antennas. It would also explain the
slight asymmetry in the measured pattern. The shadowing by the

absorbent material for 6 greater than 1400 is again evident
here. The above figures also show that there is a difference of
4 dB in the maxima of 0 - 00 and 0 - 900 patterns, whereas the

pattern maxima at 0 - 180 are approximately 14 dB below that
at 0 - 00. As mentioned earlier, the maxima occur at the broad-
side to the conical surface.

The 8-polarized patterns in elevation are shown in Figures
18 and 19 for the same azimuth positions as for the 0-polar-

ized patterns. These figures clearly show that unlike the pat-
terns of a circumferential slot on a similar cone, the cross-
polarization is well below the dominant polarization at the same
azimuthal angles. The shadowing by the absorbent material at
the base of the cone is clearly identified in these patterns.

Since the pattern levels of this polarization are approximately

18 dB below the reference level, the misalignment of the trans-

mitter and receiver antennas is also more apparent.

Azimuthal cuts at various angles, including the broadside

of the antenna element, are shown for both polarizations in

Figures 20 through 22 . From Figure 21 it is seen that the
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measured broadside pattern of the 0-polarization exhibits a
broad maximum at 0 - 00 and is in very good agreement with the
computed pattern. As stated earlier, this has been selected as
the reference point for all patterns. In the e-polarized azi-

muthal cuts, where the levels are considerably lower than the
reference level, the shift of the null between measured and
computed patterns is more apparent. At other points, however,
the agreement between measured and computed values is very good.
The e-polarized pattern levels are in all cases at least 18 dB
below the reference level.

4.5 Admittance

The harmonic series formulation gives exact circumferential

slot near fields when the potential functions equations (13) and
(14) are used with the field equations (2) and (3), but without
the far field approximation equation (16). Similarly for axial
slots: use of equation (3) and the exact potential function
gives exact near field expressions. A delta function slot dis-
tribution can also be assumed for the 'sink' slot, and the
electric field expression can be (approximately) integrated over
the slot to get mutual admittance. The mutual coupling expres-
sions for axial or circumferential slots are expressed as double
sums over the azimuthal index m which is the degree of the
Associated Legendre Functions and the radial index n which is
the order of the ALF. n also indicates the proper real Spher-
ical Bessel and Hankel Function order vn. All Y12 expressions
involve derivatives of the ALF with respect to both argument and
degree, and Spherical Bessel and Hankel Functions and their
derivatives (Bowman et al, 1969). Unfortunately, the cone is
not as simple as the sphere or cylinder. The vector Green's
function for the sphere has the singularity explicitly separated,
while the essential singularity in the cylindrical expression
(see Chap. 3) can be handled for small axial separations by
assuming a small loss in the medium. The cone mutual admittance
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expressions however diverge whenever the kr's (distance from

slot center to tip) are equal, even if the O's are different.

Thus two slots on opposite sides of a circle on the cone will
have a small coupling, but the Y.2 formula diverges. Rate of
convergence is affected by the relative kr for the two slots; if

F the kr's differ by only a small amount the series may require
thousands of terms to converge. Of course round off and the
difficulty of accurately computing fractional order Associated
Legendre and Spherical Hankel functions make multiple precision
essential for such an endeavor. In practice then the series
(modal) approach to exact mutual admittance on a cone is limited
to slot circle diameters of a few wavelengths, with appreciable
separations between slots (in cone radius). Narrow angle cones
with elements spaced X/2 along a generator may not afford suf-
ficient change in cone radius to produce satisfactory convergence.
And in any case the mutual between slots on the same circle can-
not be found from the series expressions.

Two options remain for the calculation of mutual admittance.
,

One assumes the two slots are on a cylinder of mean diameter
between the diameters of the two circles containing the slots.
Then if a slot is close to the tip, a tip correctiozi calculated
from tip diffraction can be added (Golden et al, 1974). The
second option uses the Green's function in integral form, and
makes an approximation. GTD, as a short wavelength approxima-
tion is one approach (see Chap. 5) to this.

I
* Another scheme computes coupling between rings of slots, mode

pair by mode pair (Balzano & Dowling, 1974).
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CHAPTER 5

GTD CALCULATION OF PATTERN AND ADMITTANGýE

5.0 INTRODUCTION

The modal technique described in the two previous chapters

is not attractive for large diameter cylinders or conical regions

due to slow convergence of the series. In some cases the situa-
tion is even more difficult: the modal series for mutual admit-

tance on a cone with equal kr's diverges. Fortunately GTD tech-
niques are applicable when the radius of curvature is large. GTD
(Hansen, 1981) is based on surface rays, first introduced by

Keller in his Geometric Theory of Diffraction. It normally yields

an asymptotic solution valid for high frequencies (body large in
wavelengths), but often provides excellent results for smaller

bodies as well. Because of its simplicity and wide applicability,

GTD is a most attractive tool for conformal array problems. This

chapter will use GTD for calculating mutual admittance, and will

consider rectangular slot elements.

5.1 Slot Array Analysis

5.1.1 Circuit Description

Consider an array of N slots over a curved conducting sur-
face, see Figure 1. Each slot is fed by a rectangular waveguide,
see Figure 2, where only the dominant TE1 0 mode propagates and

all other modes attenuate. The electromagnetic properties of the
array can be conveniently described by circuit parameters de-

tailed below.

Consider a typical element n in the array. At a sufficient-

ly large distance t from the aperture, only the dominant TEl 0

mode is present. Then the transverse field vectors in the nth

guide can be represented by
2(x,y,z--0) - Vn (x,y) (la)
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z .,, (e,4,

Figure 1. Array of N identical slots which are fed by waveguides.

I
z

b

Figure 2. A slot fed by a rectanguide waveguide of the same

cross-section (a x b).
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R((x,yz--t) - In(z x (lb)

where
A f

e(x.y) - Y 1/2 cos 'a

Vn - modal voltage in nth element (2b)

In - modal current in n th element (2c)

Note that the field in (1) is the total field consisting of waves
traveling in both +z and -z directions. Because of the linear-

ity of the Maxwell's equations, the current in the mth element is
linearly proportional to the voltages in all elements in the array,

i.e.,
N

SIm " Y.% m - 1,2... ,N .(3)

n-I

In matrix notation, (3) may be rewritten as

[I] - [Y]CV) (4)

where [I] and 1VJ are column matrices with elements {InI and
{Vn}, and CY] is a square matrix with elements {Ymn 1.

The proportional constant Y12 in (3), for example, is called
the mutual admittance between slots 1 and 2. By reciprocity,
Y12 " Y21" One may calculate (measure) Y12 from the setup of

Figure 3, where:

(i) Element I is excited so that the (total) voltage at
the reference plane (z - -1) is V1.

(ii) Conducting planes are placed at the reference planes
of all other elements so that Vn - 0 for n @ 1.

Then it follows from (3) that
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Y 12 (5)

short all except 1

which may be considered as the definition of Y1 2 "

As a transmitting antenna, the nth element in the slot array
in Figure 1 is excited by an incident TE 1 0 mode with voltage V1+0
where the superscript 'W' signifies that the wave propagates

toward the aperture in the +z direction. The discontinuity at

the aperture causes a reflected TE1 0 mode with voltage Vn,, which
travels in the -z direction. Then the (total) voltage at the
reference plane (z--L) is

V WV +V (6a)n + n

while its corresponding current is

I Y + V-) (6b)zn C vn n

where Yc is the characteristic admittance of TE 1 0 mode

1 2 21/2
Y - 1 I i - (W•)2  .2 (7)

+For a given set of incident voltages f% ,} one can determine the

reflected voltages {Vn1 and the (total) voltages {V } from (6)
and (4). The results are

IV] -( e] + IYc] I I CY EV] (8)

IV] -2 (1I) + LYc) CY IV] (9)

where [I] is an identity matrix, and [Yc- YCIT]
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5.1.2 Scattering Description of Slot Array

For the same slot array in Figure 1, a different and equiv-
alent description may be given in terms of scattering parameters,
instead of circuit parameters.

Parallel to (3), the basic relation in the second descrip-
tion is

Vm _ [S][ 1 ,M 1,2,...,N (laX I n Vý(10a)
n-I

or in matrix notation,

IV] CS)iV)+ (lOb)

Here IS] - [SMI is a scattering matrix. S1 2 - S2 1 , for example,
is the induced voltage at element 2 when

(i) element 1 is excited with V1 - 1 (not V1 - 1), and

(ii) all other elements are terminated with a matched load,
in the manner sketched in Figure 3. Sometimes, S12 is also known
as the coupling coefficient between elements 1 and 2. The com-
parison of (10b) with (8) leads immediately to

IS] - CC- +YC-Y)) (11)

which relates IS] to the admittance matrix CY). For the special
case N - 2;

-2Y c¥Y12

s12 2 2 (12)
(Yc + Y11 ) -

For a given incident voltage vector IV] , the (voltage)reflectlon
coefficient in element m is defined by
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R- m- 1,2,...,N (13a)

and is found from (10a) to be

N

Rm- S +(V +/V + (13b)

n-I

The input admittance of the TE 1 0 mode in element m is given by

v(in) Vm 1 + . (14)

m "n• - Rm

Unlike Y. and ymUn) are functions of the array excitations.

Under the condition sketched in Figure 3 the radiation
pattern is called the match-loaded active element pattern Q,

(6,ý). For a given incident voltage vector 7+, the pattern of

the whole array is given by

N

Parray(e8,) - n VnQn(e,.) - (Q+)Th . (15)

n-i

5.1.3 One-Mode Approximation

In the previous discussion, the reference plane for voltage

and current is taken to be a distance I from the aperture as

shown in Figure 1. Specifically, I should be chosen sufficient-

ly large so that all reflected modes other than TE 1 0 attentuate

to negligible values within 1. As an example, the following

parameters are used for the dimensions in Figure 2:

a -0.9", b -0.4", f - 9 GHz
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Sshould be at least 0.45" in order that the next higher-order

mode TE 20 attenuate to one-tenth of its magnitude within X.
SFor finite Z, the calculation of {Tn1 and other scattering

parameters is quite difficult. Hence, in practice, an approxi-
mation is often used:

I - 0 .(16)

When (16) is used, all of the analysis becomes approximate. This
approximation is valid if, despite the discontinuity of the
guide and the coupling in the array, the aperture field of the

slot essentially contains no other modes than TE 1 0. For this
reason, the approximation in (16) is known as the "one-mode

approximation." It has been verified experimentally and theoret-
ically that the one-mode approximation is good if (i) the slots
are thin, and (ii) their length is roughly a half-wavelength.

Under the one-mode approximation, the expression of mutual

admittance in (5) can be replaced by

Y12 Vi 2 fA 2 E2 x HI" ds 2  (17)

where

A2 - aperture of slot 2

HI M magnetic field when slot 1 is excited with voltage V1 ,
and all other slots are covered by perfect conductors
at their openings (I - 0 in Figure 2)

12 2 electric field when slot 2 is excited with voltage V2 ,
and all other slots are covered by perfect conductors

-I at their openings.
Because 1 12r12 and 12 m V2'2 1 it is a simple matter to verify

that (17) and (5) are equivalent under the one-mode approximation.
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5.2 Slots on a Cylinder

5.2.1 GTD Green's Function for Surface Field on a Cylinder

Under the one-mode approximation, the mutual admittance
between two slots in an array can be calculated from (17). It
will now be applied to a slot array on an infinitely long con-
ducting cylinder. The key step lies in the calculation of Rl',
the magnetic field at the aperture of slot 2 due to a voltage
excitation in slot 1. To this end, consider the following
Green's function problem.

At point Q' on the surface of the cylinder of radius R,
see Figure 4a, there is a tangential magnetic dipole source
described by a magnetic current density (for exp +Jwt time
convention)

S)- M •6(r - R)6(f)6(z) (18)

where R is the magnetic dipole moment, and (r R, * 0, z - 0)
are the cylindrical coordinates of Q'. The problem is to deter-
mine H at another point Q - (R,f,z) on the same surface. The
ray technique described below applies when kR is large (say 10

or more).
kccording to GTD (Keller, 1962; Pathak and Kouyoumjian, 1974;

Kouyoumjian, 1975; Hansen, 1981), the dominant contribution of

at Q is the field on the surface ray from Q' to Q. The surface ray
is a geodesic on the conducting surface, and in the present case
is a helical path, Figure 4. The arclength of the surface ray is

- + Z2 (19)

The tangent, normal, and binormal of the surface ray are (t',
A AA A A A A

-n', -b) at Q', and (t, -n, -b) at Q. Thus, (t, n, b) form a

moving trihedron along a surface ray, pointing toward the longi-
tudinal and two transverse directions. At any point on the
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A A A

Q/

b

b

(a) 3-D view (b) Developed cylinder

SQ

(c) Cut along e-direction

Figure 4. A surface ray from source point Q' to observation
point Qon a cylinder of radius R.
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surface ray, the curvature of the conducting surface is described
by two parameters:

Rt- the radius of curvature in the direction of t (or that
in the longitudinal direction of the surface ray), and

A

Rb - the radius of curvature in the direction of b (or that
in the transverse direction of the surface ray).

On a convex surface, both Rt and R are nonnegative. For the
present case of a conducting cylinder, one has

Rt R , R(20)
"2 Rb - 2 (cos e sin0

where e is measured from the RO-axis in Figure 4b, and takes a
value between 0 and 2w. The large parameter for the asymptotic
expansion is

M -½kR /3 (21)

Thus, the solution to be presented is an approximate asymptotic
solution valid for m 4 •. Furthermore, introduce a distance

parameter
MS (k2R) 1/3 ks (22)7 ks

which is the arclength normalized by k and Rt. Note that • - 0
defines the lit region (0 - 7/2), I = 1 defines the penumbra
region, and & >> 1 defines the deep shadow region. The solution
is uniformly valid for all • > 0.

Due to the point source in (18), the final asymptotic solu-
tion for the magnetic field on the surface derived in (Lee and
Safavi-Naini, 1978; Mittra and Safavi-Naini, 1979) is given by

R(Q) • (b'bH, + t'tHt) (23a)

where the transverse component is
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12 -R2/3
Hb(Q) ~ ( -v~ ~)u~ ~2kt) v()

-2/3
+ j( /1 kR ) (R /R )u'(&)] G(s) (23b)

the longitudinal component it

"~'(r.)Cv( + (1 s j) u(t) + j( ,f'l kRt) u() Cs

and the function G(s) is(2c

k 2YO e-jks
G(s) - (23d)

Y (Co/1o)l1/2 -(120w) -1, v and u are defined in the Appendix,

and v' is the derivative of v. The solution, in (23) is largely

based on the classic work of Fock (1965).

Consider several limiting cases of the solution given 
in

(23). if the radius of the cylinder becomes infinite

kR (24)

the use of (A-11) through (A-15) in the Appendix in (23) leads to

Hb (Q) '-' [1 - k' (1)2-) IC(s) , kR+ (25a)

When (25) is substituted into (23a). we find that H~ in (23a) is

identical to the exact solution of the surface field due to a

magnetic dipole on a flat ground plan& (Pelson and Marcuvitz,

1973).

j. 
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The second limiting case occurs when

0 . 7/2 . (26)

It is found from (23) that Ht is again given by (25a), but Hb
becomes

12 3 1/2e-jw/4 ks/2

(27a)

In terms of the planar solution in (25a), rewrite (27a) as

3 k2Yoe-j3w/4 I e-jks 7,

Hb(Q) [ [Hb(Q)Jplanar + 9 f 2 e, 1 ek-

(27b)

The result in (27) is most interesting and, in fact, somewhat
surprising. The surface ray traveling in direction 8 ' w/2
Fig. 4 is a straight line (kRt * o). However, due to the finite
curvature in the binormal direction (Rb - R), Hb on the cylin-
drical surface differs from its counterpart on a planar surface
by the additional term in (27b). At a large distance away from
the source (ks + c) in the direction e - v/2, and for a fixed
kR, we find that Hb on a planar surface and that on a cylindri-
cal surface are given by, respectively,

"-J ks
[ Hb(Q))planar A ES (28)

k o-Jks
Hb(Q) 1 e'kT + A (29)

where A and B are constants independent of 9 and R. Thus, for
large ks, Hb on a cylinder is stronger than that on a plane.

As a third limiting case, let
(30)
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which occurs when observation point Q is in the deep shadow.
Making use of (A-6) through (A-10), one can derive from (23):

k2 cos 2 / 3  0 exp E-0.8B - + 0.s1 + ks)-Hb((Q)

Therefore, in the deep shadow, the field is a slow wave and
decays exponentially along the surface ray.

5.2.2 Mutual Admittance Between Slots on a Cylinder

Return to the calculation of Y from (17) for two identi-
cal circumferential slots on a cylinder, Figure 5a. To calcu-
late H, the voltage excitation V1 in slot I can be replaced by

an equivalent magnetic surface current density, see Figure 6.

l = ; "ZVi cos '!y) , for (y,z) in slot . (32)

which radiates in a completely filled cylinder (Harrington,
1961). In (32), y - RO. Making use of the Green's function in
(23a), H1 is calculated from the superposition integral

fA a' sin d0dIIV • l +^ t]
J dyldz [VW o a sin e t H cos e)

1

(33)
where the source point (y,z) iL3 written as (yl, zl). Making use
of (33) and the electric field distribution of slot 2 in (17),
the final expression for Y between two identical circumferen-
tial slots on a cylinder is obtained namely:

1i• iY2 " A dYldZ1  dY2 dz2 (con • yl] cos • (Y2 - R* 0 )]g.2A 2

(1,2). (34)

318

,A *-.***



-- L

zQRRm' RL7.'

I -

(a) CIRCUMFERENTIAL SLOTS (b) AXIAL SLOTS

Figure 5. Two identical slots on the surface of a cylinder.
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Here (yl,zl), and (y 2 ,z 2 ) are two typical points in slots 1 and

2, respectively. The Green's function g, is

g0(1,2) - Hb sin 2 8 + Ht cos 2 0 (35)

where (Hb,Ht) are given in (23) with

8 !(Y 2 - yl) 2 + (Z2 - li (36a)

e - 8tan (z2 - zl)/(y2 - yd)] (36b)

In a very similar manner, the mutual admittance between two iden-
tical axial slots, Figure 5b, can be derived. The final result
reads

"a-'5"jA dYldzlJ dy2 dz 2 Ecos S z1)Ccos w(z 2  z0 ))gz(l, 2 )1I2 " -T Az0)2 Y

1 2 (37)

where the Green's function gz is

gz(l,2) - Hb cos2 8 + Ht sin2 8 (38)

The two surface integrals in (34) or (37) must be evaluated
numerically. Extensive numerical results are given by Lee and
Mittra (1977), while some representative examples are quoted
below. All values of Y are presented in (db, phase in degrees)
format, where db - 20 logl 0 ( Y12 in mho). See also Chiang and
Cheng (1968), Sureau and Heassel (1971), Stewart and Golden (1971),
Felsen et al (1974), Pathak (1975), Hwang and Kouyoumjian (1975),
Steyskal (1977), Lee and Eichmann (1980), and Hessel et al (1979).

Agreement between GTD and exact modal solutions. Under the
one-mode approximation, an exact solution of Y12on a cylinder
can be found in terms of cylindrical functions (the so-called
"exact modal solution") see Chapter 4. Consider two identical
circumferential slots with parameters
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a - 0.9" , b - 0.4" R- 1.991" (39a)

f - 9 GHz , A - 1.3123" (39b)

For various slot separations, values of Y calculated by GTD
solutions in (34) and by the exact modal solution are presented
in Table A. Note that they are in excellent agreement.

Effect of transverse curvature term. As explained in the
discussion of (26) through (29), the ray traveling along the
generator of the cylinder is straight. However, the field Hb on
it is stronger than that on a ray traveling on a planar conduct-
ing surface. Such a dependence on the surface curvature in the
transverse direction of the ray is most interesting., And can be
seen in Figure 7, where the ratio

Y12 on a cylinder with radius R
Y12 on a plane

is plotted as a function of R for z0 - 8" and 0" 0. Note

that the convergence rate of the cylindrical Y12 to the planar
Y12 is not as rapid as one would normally expect. For example,
at kR - 50, the cylindrical Y12 is still about 10 percent higher
than the planar one. The exact modal solution in this figure is
truncated at kR - 50, because beyond this radius, it becomes
extremely slowly convergent.

Additional numerical results of Y12 between two identical
slots on a cylinder are given in Figures 7 to 11. The normal-
ized pl-ase is defined by the phase of Y12 exp(+Jks 0 ), where so
is the center-to-center distance of the slots and is equal to
(z2+R 2 22)1/2

This investigation on the effects of transverse curvature
was initiated after the discovery by Hughes and PINY workers
that coupling was stronger for circumferential slots along a
cylinder than for slots on a flat plane. At that time there
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TABLE A. Y12 OF CIRCUMFERENTIAL SLOTS ON A CYLINDER

0(des.) 7o(inch) Modal Solution GTD Solution

0.5' -62.62 db -62.54

-720 -720

2. o -71.78 -71.66
-117° -11600l7l

8." -81.84 -81.83
340 370

40. 0" -91.95 -92.46

-1150 -1100

30° -77.42 -77.69

1750  177*

600 -90.00 -90.17
2" 030 "1

900 j -102.52 -103.10

1200 1160

30 -81.33 -81.34

-770 -75°

400 -89.87 -90.02

L 1680 170°

60* -101.97 -102.48

I -490 470

Parameters of slots are given in (39).
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was no physical or mathematical explanation of this interesting
phenomenon.

5.2.3 GTD Green's Function for a Surface Field on a General

Convex Surface

To Calculate the mutual admittance between slots on a gen-
eral convex surface, the GTD Green's function for the cylinder
in (23) is generalized. Referring to Figure 12 consider a per-
fectly conducting convex surface Z , whose radii of curvature
at any point are large in terms of wavelength. At a point Ql,
described by position vector rl on E, there is a tangential
magnetic dipole source described by a magnetic current density

i(r) - M6(r - rl) (40)
where M is the magnetic dipole moment and lies in the tangent
plane of E. The problem is to determine a high-frequency asymp-
totic solution of H at a general point Q2 described by position
vector r on Z. In other words, the GTD Green's function for

2
the surface magnetic field for points rI and r 2 is to be found.

Before presenting the solution, several definitions and
parameters are introduced. According to GTD (Keller, 1962;
Kouyoumjian, 1975; Hansen, 1981), (Shapira, Felsen, and Hessel,
1974A and 1974B), the dominant high-frequency contribution to
H(r 2 ) is the field on the surface ray from r1to r 2 . The surface
ray is a geodesic of Z. Some of the geometrical properties are
described by Figure 12 (1) the arc length ;-which is chosen such
that s - 0 at the source point rI and s - s at the observation
point r 2 ; (ii) the tangent, normal, and binormal, denoted by
( n, -nn, -bn) at rn where n - 1,2; and (iii) its two radii of
curvature Rt(s), and Rb(s) of Zat point i in the directions of
tangent and binormal, respectively. (On a general convex sur-
face, both radii are nonnegative.)
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t Figure 12. A surface ray pencil originating from the magnetic
dipole source at Ql. The central ray of the pencil

passes through the observation point Q2. The angle

extended by the pencil I.s d4'1 at Qand di2 aatQ2
330



From the above parameters, one may calculate the following

quantities that are needed for the solution of the Green's
function:

(i) The large parameter in the asymptotic expansion of the
Green's function is

m(r) - [7 kRt(C)]J! 3  (41)

which is a function of position along the ray from rj to r 2 .

(ii) A distance parameter from rI to r 2 is defined by

t r2 k di (42)
2m 2 s

For the special case when Rt is not a function of s (constant
t 2

ray curvature), & is reduced to (ks/2m ), a well-known parameter
introduced first by Fock (1965).

(iii) The ray curvatures at the source and observation

points enter in a parameter defined by

- ks 11/2 (43)

which is positive real for a convex surface, and is reduced to
unity for the special case of a constant ray curvature.

(iv) Consider a small pencil of surface rays originating
from r1 and propagating toward r 2 ,Figure 12. The angle extended
by the pencil at r1 is d•I, and that at r 2 is d* 2 . The diver-
gence factor DF of tLe pencil is defined by

DF - (sd*1  ) 1/2(44)

where p is the caustic distance of the wavefront at r 2 and is
always positive. For example, if E is a sphere and rI is the
north pole, DF at point r. - (r,O,ý) is I
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DF - - 1/2

which varies from one at the north pole (0 - 0) to infinity at
the south po.e (e - w) as r 2 moves along a great circle.

(v) The "mean" radii of curvature between r, and r 2 are
defined by

A~t W r Rt (0) Rt (W] 1/2 (45a)

-b _ [Rb(O) Rb(s)j1/2 (45b)

Throughout this work, it is assumed that r is a smooth surface
"with a slowly varying curvature. Then (RtRlb) represents a sort

of average value ,of radii of curvature along the ray.

Return to the electromagnetic problem in Figure 12. Assume
that m(s) is large and is slowly varying for all i in the range
0 < s < s. Then an approximate asymptotic solution for the sur-
face magnetic field at r2 due to the dipole source in (40) is
given by A A #

R(r2 4- (blb2Hb + tlt 2Ht) (DF) (46a)

where

Hb -G(s)l -s) IrvM - (e) T u() + j( 2kR-[ Tv',() + (RMt/b) T3u'(M)]} (46b)

Ht- G(s)( s)[TV(&) + (1 - as) T u + J( 2kt)2/3 T3 u(

(46c)
k2Y -Jks

G(s) - --- Y - (1200)-1 (46d)

The Fock functions u and v and their derivatives u' and v' are
described in the Appendix. Several remarks about the solution
in (46) are in order.
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(1) It is derived in an approximato manner from the classic
work of Fock (1965) ane the recipe of GTD, as detailed in Lee
(1978). All traditional GTD solutions depend on It, not %. In

(46b), the term containing (A /L) was introduced through an
Ansatz suggested in. (Lee and Safavi-Naini, 1978). Because of
the fact that u' decays faster than v', this term is important
o0ly if A is very lerge and A is finite. An example occurs

t
in the axial propagation along a cylinder, where A and and
is equal to the radius of the cylinder. For this particular
example, it is only with this additional term that (46b) agrees
with the rigorous asymptotic aolution (derived recently by J.
Boersma in an unpublished note). Thus, the Ansatz is at least
partially verified.

(ii) For the speci&l case that E is a planar surface (Rt
Rb - ), (46) recovers the known exact solution given in (25).

When " is a cylinder, (46) is reduced to (23).

(iii) The solution is valid for any combination of rj and
r,. In the penumbra rogion (r 2 is close to rI and 4 << 1), (46)
gives approximately the known planar solution. In the deep
shadow ( >> 1), the residue series representation of the Fock
functions can be used, and (46) is identified as the creeping-
wave contribution.

(iv) Except for the very simple surfaces such as a cylinder,
cone or sphere, no explicit parameter equations can be found for
the geodesics (Lee, 1977). Thus, for a general surface, one may
have to rely on numerical techniques for determining the geode-
sics and the divergent factor.
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5.3 Slots on a Cone

5.3.1 Green's Function of a Cone

Let us apply the formula (46) to the field on an infinite
cone, described by the equations, Figure 13a.

x - r sin 80 cos , y - r sin 0 sin * z - r cos e0

(47)

where 60 is the half-cone angle (0 < e0 < w/2). Since the cone
is a developable surface, the rays (geodesics) on a developed

cone, Figure 13b, are straight lines (Lee, 1977.) Due to the
source at r., - (rl,1 0 ,ol), the main contribution of the field at
r2 - (r 2 ,e 0.102) comes from the shortest ray described by

ri sin Q r 2 sin n2  . (48)

As the ray propagates away from the source point rI, it reaches
the highest altitude at M where 02 w/2. After M, the ray
travels downward away from the cone tip. The various parameters
defined in Section 5.2.3 can be simply calculated from the cone
geometry, and expressed in terms of coordinates (rl,0l) and
(r2,02). The arclength is

s - {r2 + r, - 2rlr 2 cos "0- 02) sin 60}1)/2 (49)

The angle Ql at r. is
r2

-sin- air (02 1) sin 60)) (50)

2 2 2Choose Q1 < w/2 if r2 <s + r1 , and Q1 > w/2 if other-
wise. The other parameters are

S" l+ (2 "01) sin 80 (51)

r.Lr 2 tan 60 rlr2 tan (2
t siQ, sin n2 % cos' 1 cos- 2  (52)
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(a) 3-D Cone

Y'M"

Q? Qf

Q2r.

z=

(b) Developed Cone

S

0 2 7r sin eo

0S

Figure 13. A surface ray from source point Q, to observation
point Q2 on a cone with half cone angle e0.
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2k sin n, 00)1/3 "2 (53)

T- (ks/t)l/2 (2k2r r2)1/6 (sin f1 sn cos1 %)l3 (54)

DFl 1 (55)

When the above parameters in (49) through (55) are' substituted in-
to (46), we obtain an approximate solution for thýs surface field
on a cone due to a direct surface ray contributioii. Let us con-
sider a special observation point r2 such that

ks >> 1 , i and n2are not close to zerfo (56)IAfter making use of the residue series representa I ion for the
Fock functions (Appendix) and keeping only the le'ding terms,
then the two components of the field in (46) are r I\duced to

k'(s 1 (l i 2 cot %)0 exp E-0.88E - J(5ý + 0.51E + ks)]

158( 7 rlr ks)
(57a)

Ht nQ O (ks- 3 /2]I (57b)

which agree with the rigorous asymptotic solutions given in Equa-

tions (50) and (53) of (Chan et al, 1977). (In making the com-
parison, note the corresponding notations used in (Felsen et al,

*1974) and here: -i-+ J, ec - 00'L 1 .s, r>-1,rl , r.- r2 , as>
w2- nl1, and j, -o- tj) Note that the result in (57)

or that in (Chan et al, 1977) is valid only under the conditionsI in (56). For ani arbitrarily located observation point, (46)
should be used.t Two final remarks about the formula in (46) are in order.
(i) For a given source and observation point, there are infin-
itely many rays (geodesics) passing through them. The contribu-I tion from each ray can be calculated from (46), and the final
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field solution ie the superposition of all ray contributions.

In most practical problems (all the numerical computations pre-

sented in this paper), only the ray with the shortest arclength

gives the significant contribution to the field solution, where-
as all other rays may be ignored. (ii) Depending on the

polarization and the distances of the source and observation

points from the cone tip, there may be another significant con-
tribution to the field from the diffraction at tho tip, In such
a case, the total field at any point contains two dominant con-
tributions: one from the direct ray according to formula (46),
and one from the tip-diffracted ray (Pridmore-Brown, 1972, 1973).
More about the latter will be given next.

5.3.2 Mutual Admittance Between Slots on a Cone

On the surface of a cone, let us consider two arbitrarily
oriented slots. Under the assumption that the dimensions of the
slots are relatively small compared with the radii of curvature
of the cone surface, the shapes of slots are taken to be rectang-
ular on a developed cone.

Referring to Figure 14, de.arrtbh the dima.innR Arnd the

positions of the two slots by (anbn) and Ccn (n -. I)0,Wn]
n - 1,2. Thus, the radial separation of the two slots is (c 2

cl) and the angular separation is 40. The angle wn measures the
deviation of the longitudinal direction of slot n from the radial
direction of the cone. As usual, assume that the slots are
thin, and that their lengths are roughly a half-wavelength. Then
the aperture field in each slot can be adequately approximated
by a simple cosine distribution, which is the "one-mode" approx-
imation described in Section 5.1.3. Y has two dominant hieh-
frequency contributions: one from the direct rays going from
slot 1 to slot 2, and the other from the rays diffracted at the
tip of the cone, viz.,

Y12 "12 12 (58)

337

imo



z2

Wi4
0

so n

C2

# sin e,, r

C

Figure 14. Two rectangular slots on a developed cone.
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The first term Yd2 may be explicitly written as *

412 1 -2 dyf1 dz f1 / dyf 2 dz 2d2 (albla2b2) al/2 f-bl/2 8-a2/2

X (cos -s 2) g(1,2) (59a)

where

g(l,2) Hb COS B)3 Cos W4 + Ht sin w3 sin w 4  (59b)

The Green's function componients (Hb,Ht) are given in (46), and
angles (w3 'w4) are shown in Figure 14. In evaluating the inte-
grals in (64), for two given points (yl,zl) and (y 2 ,z 2 ), one must
calculate some geometrical parameters appearing in Hb and H
Those calculations lead to the following results

r n =C Cn+ Yn+z n 2cyn2 4n z n cos (wn - wn±+4))' (60a)

(sine0)-l -1 z2 -1li
On w (sin o)- sinn n nn -(w n+4)] (60b)

-t+4 tan (zn/yn) (60c)

wn+2 - Rn + (w/2) - -n 0 sin 8 0 + (n - 1)*0 sin 0  (60d)

where n - 1 and 2. One may evaluate the integrals in (59a)
with the aid of a computer.

*Coordinates (y 2 ,z 2 ) here have their origin at the center of
slot 2 Figure 14, not at the center of slot 1 as in the cylinder
case Figure 6.
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tNext, consider Y1 2, the part of mutual admittance due to

the rays diffracted at the cone tip. Approximate it by

yt
12- sin w Isin w2  (61)

where T is derived in (Golden et al, 1974) and is given by

T = (albla 2b 2 ) 1 / 2  jtan 601/2 sin (kbl/2) sin (kb2 /2)

0 4 sin 0o (kbl/f) (kb2 12.
307r clc2 si IP "O /

7r

exp j(- kcI-kc 2 ) . (62)

Here o is the zeroth-order tip diffraction coefficient and is a

function of the half-cone angle e. A numerical table of ao for

several typical values of e0 is given by Golden et al (1974).

Those values are fitted by a simple expression, viz.,

a0 - A exp (JB) , (63)

where

A - 1.305701 - 1.7550+ 2.7720- 1.4590

B = 2.7195 + 1.4608e0- 1.12950e 2+ 0.656603

Both 0 and B are in radians. It has been checked that the nu-

merical values of a0 calculated from (63) are in excellent

agreement with those tabulated in Golden et al (1974).

The final solutions for YI2 (total mutual admittance) and

Yd2 (partial mutual admittance) are given in (58), (59), and
(61). For a given geometry of the •slots and cone, the two

surface integrals in (59a) are evaluated numerically by choosing

an integration grid roughly equal to 0.05% x 0.05X. Unless

specified otherwise, all numerical computations are based on two

identical slots with slot length - 0.5X and width - 0.2%.
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"Equivalent" cylinder. It has been conjectured by Golden
et al (1974) calculating Y (the contribution from the direct
rays) approximately, the cone may be replaced by an "equivalent"
cylinder with radius

1R =27 (cl + c 2 ) sin 00 (64)

This conjecture has been quantitatively checked out (Lee and
Mittra, 1977). The conclusion is that thc "equivalent" cylinder
gives a good approximation for a small-angled cone, e.g., e0 -

0 d015°. However, the error in Y12 calculated from the "equivalent"
cylinder can be as large as 2.5 db for a large-angled cone (e0 -
300, for example).

Comparison with experiments. A set of experimental data
on the mutual coupling between two X-band open-ended waveguides
(0.9" x 0.4") on a cone was reported by Golden et al (1974).

As a function of frequency, measurements were done on the coup-
ling coefficient S1 2 , which is related to Y12 through the form-
ula in (12). In Figures 15 and 16, three sets of data are pre-
sented: (i) the experimental data; (ii) the theoretical results
from the present analysis in which the calculation of Y12 is
based on a cone, e.g., Equation (59); (iii) the theoretical
results of Golden et al (1974) in which Y d is calculated from

12
the exact modal solution of an "equivalent" cylinder. Several
observations can be made. (a) Both theoretical results are in
good agreement with the experimental data (with the present
result being slightly better). As explained in (59a), the
"equivalent" cylinder method works because the cone angles (%
100) are small. (b) The peaks and valleys are caused by the

interference between Yd and Y 2 which are of comparable magni-y12  12
tudes due to the large angular separations (60.80 and 800).

(c) There exists a slight shift in frequency (Af/f w 3 percent)

between the theoretical and experimental valleys in Figure 15.
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Figure 16. Coupling coefficient S12 between two circumfereitia1
slots on a cone as function of frequency.
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This may be due to a slight phase inaccuracy in Y2"

Mutual admittances of circumferential slots. In Figures 17

to 19, Y and Y for two circumferential slots are displayed12 12
as functions of angular separation e0 and the radial separation

(cc - c2 ). Note that the effect of Y12 can modify the curves

of Y in several different ways. When the slots are at the

same latitude, Figure 17, the direct coupling is weak. Thus,

tip contribution is noticeable even at a small angular separa-

tion. As the radial separation is increased, Figure 18, the tip

contribution is almost negligible for e < 650. When the two

slots are widely separated in the radial direction with one slot

near the tip, Figure 19, the tip contribution gets stronger, the

direct contribution gets stronger, and the direct contribution

becomes insensitive to e0 . Hence, the oscillation on the Y!2

curve has a much larger period. In fact, there is only a half-
"cycle" in the range 0 < 0 < 900, and Y1 2 appears to be shifted

from Y•2 by a fixed amount.

Effect of slot orientation on mutual admittance. Consider

two slots separated by 1 X along the radial direction. The mag-

nitude of Y12 as functions of the slot orientation angles W, and

2 is plotted in Figure 20. As expected, the maximum value

(-73 db) occurs when both slots are circumferential (wl - w2

900). This value is above 14 db, higher than that when both slots

are radial (w I w2 - 0). The minimum value (-113 db) of Y12

occurs when the top slot is radial and the bottom one is circum-

ferential. This result confirms a common belief that the mutual

coupling between two orthogonal slots is generally negligible.

5.3.3 Self Admittance of a Slot on a Cylinder or Cone

The formula for calculating mutual admittance Y12 in (17) can

be used to calculate the self-admittance Y (or the alternative

notation YII), provided that slot 1 coincides with slot 2.
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Figure 17. Mutual admittances Y12 between two circumferential

slots on a cone calculated from GTD solution.
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slots on a cone calculated from CTD solution.
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However, in the actual numerical evaluation of GTD expressions

such as (34), (37), and (59), a mathematical difficulty arises

as explained below.

Concentrate on (59) with a, - bl, a 2 - b 2, C 2 ,

and -0 - 0, which is the direct ray contribution Yl to the self-

admittance of a slot on a cone. This integral is divergent, due

to the fact that, as point Q, approaches point Q2, Figure 14,

the Green's function in (59b) becomes infinite as

g(l,2) = Cs- 3  s .0 , (65a)

where s, defined in (49), is the distance between the two points,

and the parameter C is

C 12 4 0-k (2 - 3 cos 2 nI) (65b)

It is well-known that the singularity of cubic power is non-

integrable with respect to a surface integral. This difficulty

can be traced back to the derivation of the Green's function g.

Strictly speaking, g is a distribution and can be wrtten as

g-D• , (66)

where D is a second-order differential operator with respect to

coordinates of point Q2, and g is the Green's function of a

vector potential component. A "legitimate" expression corres-

ponding to (59a) should read

- a- (cos z2 ad

(67)

which is convergent, and Yd has a well-defined finite value.

However, in writing (59a), we have interchanged the differential

operator D and the second surface integration operator in (67).
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This interchanging is not permissible and, therefore, leads to

the divergent integral in (59a).

Since (67) contains a differential operator and is not

suitable for numerical evaluation, it is better to work with (59a)
provided of course that one can extract the correct finite part

from the divergent integral. To this end, rewrite Green's
function in (59a) as

g =' g 0 + g • (68)

The first term go in (68) is the Green's function of an infinite

ground plane, and is given by the well-known expression, c.f.

(25),

o0 G(s) Ecos 2 Q + -s(l - ) (2 - 3 cos 2 nl)] (69)

Note that, as s -P 0, go has exactly the same singular behavior

in (65) as g. This is expected, because in the sufficiently
small neighborhood of a point source, the cone can be approxi-

mated by its tangent plane. The second term gl(gl - g - go) in

(68) is the difference between the Green's function of a cone

and that of a plane. Near the source, it can be shown from (59a)

and (69) that

Cs-3/ 2  s 5 + 0 (70a)

where

C1 = (1920Pt)- 1 k- 1 / 2  -3/ 2 (1 - j) (2 - 3 sin2 l) (70b)

When (68) is substituted into (59a), the self-admittance yd on

a cone is decomposed into two components, namely,

Y- Yod + •( (71)

The singularity of g, at the source point specified in (70) is
integrable. Thus, there is no difficulty in evaluating Yd

numerically.
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dThe first term Yo is the admittance of a slot on a plane.

It is defined by (59a) after replacing g by g0 in (69). From

(23d) and (69), recognize the following identity:

1 1 2 .
go - (1+4Ž-- ) C(s) . (72)

k aY2

Note that (72) is in the form of (66). Substituting (72) into

(59a) and interchanging integration and differentiation operators,
one obtains:

o• - 2 YI2 dz• co 2 {(l + 1 a2  fi r'-
JJ k y2  y1 dz

Cos (2k) G(s))} .(73)
a (3

The integral in (73) is now convergent, and can be considered as

the "finite part" of the divergent integral in (59a). For
numerical evaluation, (73) in the space domain is converted to

that in the Fourier transform domain. Following Rhodes (1964),

it is simplified and the final result reads

ReYd . a5j4 da C(c) b J 0 (t)dt - J31 (b)] , (74a)

a k(8b 2

Imy d  -a -. k da C(a b Y0(t)dt - Yl(Ob) 2

15n k W

+ da C()y K0(t)dt + Kl(yb) - ) (74b)
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2 2

where 8 - (k2 - ~2)1/2 , y" (c 2- 2)/ , and

*la CO'a/4 75)

1 - (eta/ 70

This is no difficulty in evaluating (74) numerically.

In summary, the direct ray contribution of yd for self-

admittance of a slot on a cone as given in (59a) is divergent,

due to an "illegal" interchange of integration and differentia-

tion operators in the derivation process. The (correct) finite

part of the divergent integral is given in (71), where Y is

given in (74), and yd in (59a) after replacing g by gl. The

same difficulty arises in the case of a cylinder, and it is

treated by the same procedure as in the case of a cone.

The self-admittance Y of a slot on three types of surfaces
has been derived: (i) For an infinite plane, the final solu-

tion Y - yd is given in (74). (i) For an infinite cylinder,

Y - is given in (71). For a circumferential slot, is given

by the integral in (34) after replacing g9 by (go - go), and

recognizing that !I - (n/2) - e and A1 - A2 . For an axial slot,

is given by the integral in (37) after replacing g by (gz
go), and 01 - 0 and A1 - A2 . (iii) For an infinite cone, Y has

two contributions as deicribed in (58). If one realized that

the two slots in Figure 14 are identical, and occupy the same

position on the cone, Y' is given in (61) and Y in (71). To

calculate Yd, we use (59a) after replacing g by gl, where g, can

be gathered from (68), (59b), and (69). Numerical results of Y

on the above three surfaces are presented below.

Slot on a plane. As a function of slot length a, we plot

(a/2b)Y in Figure 21 for three different values of slot width b,

Those curves are practically linear, and can be described for

0.4 < (a/X) < 0.6 to a good accuracy by
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Figure 21. Self-admittance Y of a slot on an infinite plane.
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Y -= -{[ 1.029 + jO.596] + (3.75 + JB)(R - 0.5)} millimho (76)
aX

where B - 44, 33, and 21 for b = .0001, 0.001l, and 0.01A,
respectively.

Relation co dipole impedance. There is an alternative

definition for the (self- or mutual) admittance of a slot.

This alternative self-admittance ý is related to the present Y

by

S= (a/2b)Y . (77)

From the duality relation in Maxwell's equations, it can be

shown (Jordan and Balmain, 1968, p. 519) that for the special
case a - A/2,

2=- 1(1207r) 2(2) , (78)

when 2 is the input impedance of a centrally fed, half-wavelength

dipole radiating in the free space (not in a half-space as in the

case of a waveguide-fed slot). From (76) through (78), we find

chat for a half-wavelength dipole,

2 - 73.12 + j 42.36 ohm , (79)

which agrees with the results in Rhodes, (1964) and Jordan and

Balmain (1968).

Slot on a cylinder. Consider a circumferential slot of

dimension 0.9" x 0.4" on an infinitely long cylinder whose radius
is 3.8". Figure 22 shows Y calculated by the present GTD solu-

tion and that by the exact modal series solution in (Golden et

al, 1974). These two solutions are in agreement within 0.5% in
magnitude and one degree in phase. Note that, under the "one-

mode approximation," the modal series solution is exact;. It is

amazing that the present GTD solution gives such an accurate

result fcr kR 18.
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Figure 22. Self-admittance Y of a slot on an infinitely long

cylinder.
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Slot on a cone: variation with radial distance. In all of

the following cone calculations, the slot has the dimensions of

0.5X x 0.05X, except when stated otherwise. In Figures 23 and
24, the slot is circumferentially oriented on a cone with 0 0
300) and the variation of Y with the radial distance c is
presented. Two effects are observed: (i) As c is increased, the
radius R - c sin 0 of the "equivalent" cylinder becomes larger
and larger. The magnitude of Y decreases and approaches the

asumptotic value of the slot on a plane. (ii) At c - 2X, the
tip contribution Yt is less than 1% of the Y ,and this con-

tribution diminishes as c increases.

Slot on a cone: variations with cone angle. As 0 is

increased, the cone surface becomes flatter. Therefore, Y in

Figure 25 approaches its value on a plane.

Slot on a cone: variations with slot length. It is inter-

esting to observe from Figure 26 that the minimum values of Y

for both the cone and plane cases occur roughly at a - 0.45X, not
at the resonant length a = 0.5X.

Slot on a cone: variation with slot orientation angle.
Figure 27, shows that there is about 10% increase in Y as w

varies from 0 (radial slot) to 7/2 (circumferential slot).
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APPEND IX
FOCK FUNCTIONS

In this Appendix some useful formulas of the functions
wl(t), w2(t), v(t), u(t), and vl(t)are defined and listed.

These functions are commonly known as Fock functions.

Definition: For a complex t and a real

w1(t) - r dz exp [tz - z. 1 (A-1)

w2 (t) -7 dz exp, tz - 'S z ~t (A-2)

v(~ -e~/ 4  ' _____ e d (A-3)

~l/2 i(t)

3/2 1 r 1w 2(t) eJ~ dt (A-4)

where integrationi contour rpr 2) goes from to 0 along the line
Arg z - -2wr/3 (+2n/3) and from 0 to -along the real axis. Be-

cause of different time conventions, w l(w2) above is equal tc

w 2(wl) defined in (Fock, 1965).
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Residue series representation: For real positive E,

V(W) = e-jW/ 42rffWE312 n (A-6)

n-i

U( -f42r 3/2 e-i~tn (A-7)Sn-I

1~~~~ -jr -12J 2~t(t
Vl() -ejf/42 n t e (A-8)

n-i

u ( 1) - eJ r/4 3 J ý-/2 - j 2 Et) e n .A-1e)
n-l

where tn = It exp(-j1/3), t n ten Iexp(-j-1/3). and

n It I I t",I n % =•
_ _- - - -nII I t

1 2.33811 1.01879 6 9.02265 8.48849

2 4.08795 3.24820 7 10.04017 9.53545

3 5.52056 4.82010 8 11.00852 10.52766

4 6.78671 6.16331 9 11.93602 11.47506

5 7.99413 7.37218 10 12.82878 12.38479
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Small. argutmntx asymptotic' expanston: For real positive

• and 0 -+0,

Su/ e143/2 "• 3 7rn• -j%14 9/236
v(&) e 1- T + + - 1-2e - 4.141 10 6 +

460 (A-li)

Fn__ 43/ 5An _-Jn/4 9/2 -26
u(C) , i -' 4 + C + -4- e -3.701 x ].0 +

22 (A-12)

/-Jirf/4 3/2 21 3 7rr _-jirf4 9/2 -2 6d~w e•14• 12 7i -3 64r e-_149 + 4.555 x:L0-2C + ...Vl(") 1 + "-" e 12 & 6-4- e(A-5513)0&

(A-13)

-j3 1/41/2 2 + 45V/i -Jw/4 7/2
e'(0 I 2 +- e - 2.485 x 10 & +

20 1024(A-14)

u' (C) f / e- J31/ 4 el/ 2 + j 2 + 4-5Zw _-j w/4 7/2 -1 5
4 4 128 C 2.221 x10 & +..

(A-iS)

Numerical evaluation: For E > tO, the residue series repre-

sentation with the first ten terms in the summation can be used.

For t > to, the small argument asymptotic expansion with the
first five terms can be used. It has been indicated by Chang
et al (1976) that the smoothest crossover is obtained if t0 - 0.6.

In the present study, t0 has been set to 0.7, where the difference

in the two representations is less than 0.1% in magnitude and

0.90 in phaae.
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AXIAL TEST CASE

Inputs

XIC = 6.28319 Ytl 1

AA - .2 PHI 0

BE - .5 ZO 8

IPA - 3 RADIUS - 2

PIE -14

Outputs

Y12 - .6595E -6 /-179.21

DB - -. 12362E3

NORM PHASE - -179.21
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CIRCUMFERENTIAL TEST CASE

Inputs

XK -, 6.28319 YI1 , 1

AA .5 PHI = 30

AB - .2 ZO = 0

IPA - 14 RADIUS = 2

IPB 1

Outputs

Y12 .1340E - 5 /155.34

DB - - .11745E3

NORM PHASE " 172.34
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C MAIN PROGRAM SHOULD INCLUDE THE FOLLOWING
IMPLICIT COm~PLEX C H Z
DIMENSION TI,(10)*TNPIC1O)
REAL. ZOoMAG
COMMON PI TZI.TZ2*TYlpTY2*RoTHETkIA
COMMON /DATA1/ TNoTt4PI*RHOAC1,C2oF2&IOP
COMMON /DATA2/ AO*B0.ZC*YC
DATA TN/2.3381laa.08795.5.52156,6.78671,7.99A17*
I9.02265i*l0.04017.11.00852ol1.93602.12.82878/
DATA TNPI/1.O1879,3.2~4820,4.B2010,6. 16331,7.37218.
I .48849o9.535tI5,10.52766,11.47506,12.38479/

C INPUT PARAMETERS HERE
C FOR AXIAL SLOT SET:

ASBB
BwAA
lI=~2
AO uB*XK
50 A*XK

C FOR CIRCUMFERENTIAL SLOT SETt
A=AA
BUBB
IjuI
AC=A*XK
50 uB*XK

C FOLLOWING FOR BOTH CASES
ZYI=CMPLX(YI 1*0.)

C MAY LOOP OVER Z0.RADIUS*PHI
PHIOUPHI
WIDTHI-AO/IPA
WIDTH2mBO/ IPB
CI=CEXP(CMPLX(O * -PI/3))
C2=CEXP(CMPLX( 0 * PI/4))
F2.SQRT(PI)
Yln-.5*(AO-WIDTHI)
Zi.-. 5*CB0-WIDTH2)
RHO uRADIUS*XK
ZC=uZXK
YCuRHO*PI*PHI/ 180
IF CPHZ.EQ*D) YOO.001
YwYO/XK
Y2=YO-YI
E2mZO-ZI
DO 80 K.1.IPA
TYInYI+K*WIDTHI
DO 90 Lwl*IPB
TZluZI+L*WIDTH2
DO 100 Mw1.ZPA
TY2oY2+*WVZDTH I
DO 110 Nul*IPB
TZ2nEQ.NWI DTH2
R=SQRTCCTY2-TYI )*24(TZ2-TZ1)02)
THETHAuATAN2CCTZ2-TZI)o(TY2-TYI))
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CALL CYLINDC i .zsUHm 
j

310 CO%?IIIWJ

90 CCHTINUE
so CONTINUE~

PKASLUATM"29'IKAZY2)PL&'L 
2)'116/PI

zPVi0Dm~ZY2*EXP0N
p~aAAI~AIRAGtZ~PROD) ,RLALCZPROD 

)1S0$/P1
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CHAPTER 6

CONICAL ARRAY EXPERIMENTS

6.0 INTRODUCTION

The Hughes Aircraft Company conformal array program for

Navair culminated in a conical array test bed. This experimental

measurement program was designed to validate the theoretical

calculations and to explicate features of cone diffraction.
The array consisted of a conical structure with crossed slot

radiators fed by a stripline feed network that provided control-

lable amplitude and phase excitations of each arm of the crossed

slots. For ease of design and construction the frequency of

operation was selected in the S-band region. The actual fre-

quency of operation was 3.185 GHz. The array is described in the

following sections. See bibliography for HAC reports; also

Villeneuve et al (1974).

Other work on the care and feeding of conformal arrays
includes ring arrays at HF (Longstaff and Davies, 1968), scanning

of ring arrays via local oscillator phase (Davies, 1965; Davies

and McCartney, 1965; Fenby and Davies, 1968), scanning of ring

arrays via Rotman or Butler beam forming network (Davies, 1965;
Sheleg, 1968; Sheleg, 1973; Skahill and White, 1975). Lens feeds

for ring arrays use an R-2R lens (Boyns et al, 1968; Boyns et al,
1970), and a geodesic lens (Holley et al, 1974). Other conformal

array hardware includes a wrap around microstrip array (Munson,
1974), a small array on a cone (Thiele and Donn, 1974), measure-

ment of mutual admittance of slots on a cone (Golden et al, 1943),

a TACAN array with space harmonics (Christopher, 1974; Shestag,
1974), a cylindrical despun microstrip array using switches

(Gregorwich, 1974), a spherical retrodirective array (Rutz-Philipp,
1964), the dome antenna which is a hemispherical bootlace lens,

(Schwartzman & Stangel, 1975) and finally a survey of rotationally

symmetric arrays (Provencher, 1972),
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6. 1 Feed Network

The feed network is a 76-way variable power divider* with

independently variable amplitude and phase control at each out-
put and is capable of feeding 38 variable polarization radiators,

although only 37 such radiators were actually used in the experi-

ment. It is built in modular form and consists of 5 five-way

variable power dividers feeding 19 four-way power dividers whose
power division and phase shifts are variable. The networks are
fabricated in stripline using one-eighth inch ground plane spac-

ings. Semi-rigid coaxial lines 0.141 inch in diameter are used

as interconnections between modules as well as between the feed
network and the radiating elements. The arrangements of the

modules are shown in Figures 1 and 2. They consist of combina-

tions of quadrature hybrids. By adjusting the lengths of the

open circuited coaxial stubs the amplitudes and phases of the
element excitations can be arbitrarily adjusted. Figures 3 and
4 are photographs of the physical layout of the units. Figure 5

is a schematic of how the units are interconnected.

*For a description of VPD, see Teeter and Bushore (1957), and

Vaillancourt (1958).
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INPUT pl

LEGEND:

"T 309l HYBRID

X OPEN CIRCUITED
STUBS FOR AMPLITUQE
CONTROL

tk OUTPUT LINEC

Fig. 1 Variable power divider module.

INPUT

LEGEND:

2 30D HYBRID

X OPEN CIRCUITED
STUBS FOR AMPLITUDE
CONTROL

OPEN CIRCUITED
STUBS FOR PHASE
CONTROL

OUTPUT LINES

Fig. 2 Amplitude and phase control module.
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Fig. 3 Physical layout of power divider mndule (4R-53937).

• r ° T " . . . . . . .. ...

Fig •4 Physical layout of amplitude and phase control module (4R-53941).
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5-WAY VARIABLE
POWER DIVIDERS

S ~TO 4-WAY AMPLITUDE

AND PHASE CONTROL

MODULES

TO RADIATING
ELEMENTS

4-WAY AMPLITUDE
AND PHASE CONTROL
MODULE

Fig.-5 Schematic of feed network interconnection.

6.2 Variable Polarization Radiating Element

The radiating element consists of two dielectrically-loaded,

crossed-slot radiators independently excited through stripline

matching networks. The element is illustrated in Figure 6.

The stripline matching networks are shown shaded. Each matching

network is excited from the rear through a coaxial connector

and is coupled to its corresponding slot. The printed circuit

board material also acts as dielectric loading for the radiating

slots. The assembly is machined from aluminum. Figure 7 shows

the assembled radiator and its various components. The elements

were adjusted for individual VSWP.'s of approximately 1.2 or better

when in a groundplane and isolated from other elements.
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STRIPLINE FRED

INPUT FOR
STRIPLINI FRED HORIZONTAL
AND MATCHING SLOT

NTWORICCOR
VE:RTICAL SLOT

COUUPLING LINE
eon HORIZONTALTICA

SLOOT

Fig 6 Crossed slot radiating element.
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Fig. 7 Components and assembled crossed-slot radiating element (4R-53938).

6.3 Structural Configuration

The array and feed network are packaged as a self-contained

structure. The unit is a cone approximately seven feet in

length with a half-cone angle of 10.250. It is constructed in

several sections. The lower portion contains the feed network

which is accessible by removing cover panels. The central

portion contains the radiating elements. A removable cover

panel is located on the side opposite the radiators for easy

access. Table I gives the locations of the various elements in

terms of their distance along the slant height from the tip and

their angular position about the cone axis. The upper portion
of the structure includes the tip which is machined from solid

aluminum. Figure 8 shows a front view of the completed unit.

It may be seen that the radiating elements are not contoured

to the cone surface, but have flat faces. This arrangement
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TABLE 1. POSITION OF ELEMENTS ON EXPERIMENTAL CONE

Slant Distance Angular Position
Element from Tip, About Cone Axis,

No. inches Degrees

1 32.241 0.0
2 34.094 18.0
3 34.094 54.0
4 34.094 306.0
5 34.094 342.0
6 35.947 0.07 35.947 36.0

8 35.947 324.0
9 37.800 18.0

10 37.800 54.0
11 37.800 306.0
12 37.800 342.0
13 39.653 0.0
14 39.653 36.0
15 39.653 72.0
16 39.653 288.0
17 39.653 324.0
18 41.506 18.0
19 41.506 54.0
20 41.506 90.0
21 41.506 270.0
22 41.506 306.0
23 41.506 342.0
24 43.359 0.0
25 43.359 36.0
26 43.359 72.0
27 43.359 288.0
28 43.359 324.0
29 45.212 18.0
30 45.212 54.0
31 45.212 306.0
32 45.212 342.0
33 47.065 0.0
34 47.065 25.714
35 47.065 334.236
36 48.918 12.857
37 48.918 347.143

Note: The actual cone has two additional unused elements located
at slant distance 45.212 inches and at angular positions
900 and 2700.
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Fig. 8 Front view of completed conical array (4R-54192).

all, wed all the radiators to be identical and interchangeable and,

because the surface discontinuities are small in terms of wave-

length, they had a negligible effect on measured radiation

patterns. The coaxial cables connecting the feed network to

the radiating elements are evident in the lower section.

Fixtures for mounting the unit are also shown attached to the

base.

A rear view of the unit is shown in Figure 9. The assembled

feed network is visible in the lower section. The rear portions

of the radiating elements are partially visible in the central

section. Figures 10, 11 and 12 show close up views of the front

and rear of the installed radiating elements and of the feed with

open circuited stubs, respectively.
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Fig. 9 Roar view of completed conical array (4R-54194).
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Fig .10 Locations of radiating elements on cone (4R-54196).
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F i g. 11 Rear view of radiating elements and feed cables installed in cone (4R-54197).
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Fig . 12 Feeding network with open circuited stubs for amplitude and phase control. (4R-54376)

6.4 Experimental Measurements

Pattern measurements on the experimental array were made for

two selected beam positions, e equal to 500 and e equal to
79.75 The azimuth angle p was zero in both cases. The

patterns were e-polarized on the peak of the beam. The two

experimental cases correspond to the computed cases of Figures

32 and 33 respectively of Chapter 2.

6.4.1 Aperture Distributions

The experimental element excitations were obtained by an

iterative procedure in which the fields directly in front of

the slots were measured with a probe and comDared to the required
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relative values. Three iterations were made in both cases.

Several probes were tested and the most repeatable results were

obtained with a stripline dipole that was fitted into a dielectric

tube and held snugly over the slots. Figure 13 shows a close-up

of the probe. The dipole arms have been trimmed down to almost

zero length and the actual coupling method is uncertain. Some

difficulty was experienced with the probe, in that it appeared

to have some cross polarized component. However, as a matter of

expediency this probe was used for setting up the required aper-

ture distributions. The measured radiation patterns had a

corresponding slight polarization rotation but were otherwise

in close agreement with the calculated patterns. Figure 14 shows

the probe held in position for setting up the required aperture

distributions. Tables 2 and 3 give the desired and measured

slot excitations for the two beam positions. Excellent agreement

for most slots is evident, though some errors exist, primarily at

F i g .13 View of probe used for setting aperture distribution. ;4R.54372)
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Fig •14 Probe in position on conical array. (4R-54373)
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TABLE 2. DESIRED AND MEASURED EXCITATIONS
OF CIRCUMFERENTIAL AND RADIAL SLOTS

FOR BEAM AT ep = 500

Circumferential Slot Radial Slot

Ampl. dB Phase Deg. Ampl. dB Phase Deg.i ElementNo. Desired Measured Desired Measured Desired Measured Desired Measured

1 -13.14 -13.8 34.89 34 - w -31 - - 40

"2 - 9.41 - Q.5 145.33 147 -20.49 -I1 - 47.75 - 44

3 -17.56 -17.8 -119.58 -119 -19.13 -18.1 25.30 36

4 -17.56 -13.0 -119.3G -118 -19.13 -18.2 205.30 208

5 - 9.41 - 9.2 145.33 148 -20.49 -22.1 132.26 127

6 - 4.93 - 4.6 -144.92 -146 - ® -26 60

7 - 8.82. - 3.6 - 74.84 - 77 -13.13 -13.5 96.25 92

8 - 8.82 - 8.1 - 74.84 - 78 -13.13 -12.6 83.75 - 93

9 - 3.92 - 4.1 - 43.62 - 53 -18.34 -17.3 132.94 145

10 -13.46 -13.4 111.70 114 -15.57 -14.3 - 82.89 - 85
11 -13.46 -13.1 111.70 107 -15.57 -16.3 97.11 96
12 - 3.92 - 3.9 - 43.62 - 52 -18.84 -18.4 - 47.06 - 55

13 0.00 - 0.3 0.00 0 - -28 - 103

14 - 8.44 - 8.1 130.14 136 -13.43 -12.9 - 42.85 - 46

15 -16.74 -17.0 - 31.17 - 32 -12.42 -11.7 163.15 165
16 -16.74 -13.5 - 31.17 - 30 -12.42 -13.5 - 16.85 - 14

17 - 8.44 - 9.3 130.14 133 -13.43 -12.3 137.15 136
18 - 5.62 - 4.2 130.90 123 -16.74 -16.7 - 55.05 - 55

19 -12.18 -13.3 - 30.72 - 46 -17.48 -16.5 140.18 138
20 -22.14 -22.2 -147.16 -126 -13.57 -13.8 - 33.17 - 27

21 -22.14 -23.0 -147.16 -148 -13.57 -14 146.82 160
22 -12.18 -12.1 - 30.72 - 16 -17.49 -16.9 - 39.82 - 21

23 - 5.62 - 5.3 130.90 134 -16.74 -16.5 124.95 120

24 - 3.54 - 4.0 196.25 195 - -30 - 192
25 - 7.16 - 7.7 - 54.37 - 52 -16.28 -16.5 141.49 135

26 -22.66 -22.0 -116.94 -105 -15.53 -14.2 69.82 70

27 -22.66 -22.2 -116.94 -114 -15.53 -15.3 -110.18 -102
28 - 7.16 - 7.3 - 54.37 - 41 -16.28 -17.5 - 38.51 - 32

29 - 6.96 - 6.5 - 60.65 - 58 -18.92 -22.4 146.25 -151

30 -10.26 -10.8 155.12 146 -19.83 -20 - 56.48 - 59

31 -10.26 -10.5 155.12 156 -19.83 -19.0 123.52 120
32 - 6.96 - 6.8 - 60.56 - 65 -18.92 -17.6 - 33.75 - 40

33 - 4.94 - 5.ý 24.60 8 - -30 - 150

34 -13.92 -14.8 71.79 59 -22.80 -24.5 -106.58 -116
35 -13.92 -13.9 71.79 66 -22.30 -28 73.42 62

36 -11.51 -11.8 100.52 97 -30.84 -29.5 - 51.19 - 22

37 -11.51 -11.5 100.52 98 -30.84 -28 128.81 131
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TABLE 3. DESIRED AND MEASURED EXCITATION OF
CIRCUMFERENTIAL AND RADIAL SLOTS FOR

BEAM AT ep = 79.750

Circumferential Slot Radial Slot

Ampl. dB Phase Deg. Ampl. dB Phase Deg.Element

No. Desired Measured Desired Measured Desired Measured Desired Measured

I - 9.78 - 9.4 2.72 4 - -31 -

2 - 8.63 - 8.3 67.67 70.5 -30.94 - 33 -126.19 -

3 -17.19 -17.8 -158.54 -157 -29.13 - 33 - 16.32 -

4 -17.19 -17.6 -158.54 -156 -29.18 - 31.5 163.68 -

5 - 8.63 - 8.4 67.67 70.5 -30.94 - 32 53.82 -

6 - 2.75 - 3.2 43.92 49 - - 31 -

7 - 9.89 - 9.8 131.35 129.5 -27.02 - 29 -113.96 -110

8 - 9.89 -10.0 131.35 131 -27.02 -30.5 66.04 120
9 - 1.37 - 1.1 60.76 61.5 -25.60 -32 -119.66 -

10 - 7.91 - 7.5 - 78.51 - 76 -15.41 -15.5 103.63 106

11 - 7.91 - 7.5 - 73.51 - 79 -15.41 -15.4 - 76.37 - 76

32 - 1.37 - 1.2 60.76 63 -25.60 -28.5 60.34 40

13 0.00 + 0.2 0.00 1 - -31 -

14 - 3.62 - 3.5 171.11 171 -19.11 -17.3 - 29.67 - 24

15 -15.14 -15.9 121.54 129 -11.72 -11.7 - 61.48 - 60.5

16 --15.14 -14.8 121.54 123 -11.72 -11.6 118.52 123

17 - 3.62 - 3.0 171.11 171 -19.11 -19.3 150.33 155
18 - 2.61 - 2.5 65.36 62 -25.55 -31 -150.42 -

19 -11.86 -11.8 - 20.30 25.5 -22.30 -27 96.50 120
20 -37.96 -32 - 30.59 -22.38 -26 13.31 20

21 -37.96 -30 - 30.59 0 -22.38 -24 -166.69 -163

22 -11.86 -12.0 20.30 - 18.5 -22.80 -22.5 - 33.50 - 85

23 - 2.61 - 2.4 65.36 64 -25.55 -31 29.58 -

24 - 0.78 - 0.8 34.39 36.5 - - -31 - -

25 - 7.02 - 6.8 169.61 169.5 -26.33 -32 37.11 -

26 -17.81 -20.0 91.17 30 -16.90 -18.7 100.22 89
27 -17.81 -13.2 91.17 90 -16.90 -15.8 - 79.78 - 72
28 - 7.02 - 6.5 169.61 173 -26.33 -30 -142.89 - 60

29 - 6.56 - 6.5 63.77 63.5 -25.14 -30.5 - 66.60 -

30 -12.41 -12.0 -107.48 -106 -17.56 -18.8 -138.45 -143

31 -12.41 -11.9 -107.40 -107 -17.56 -17.2 41.55 48
32 - 6.56 - 6.5 63.77 60 -25.14 -29 113.40 150
33 - 6.23 - 6.5 43.16 46 - -30 -

34 -14.15 -15.4 99.01 99 -34.64 -31 - 90.03 -

35 -14.15 -14.8 99.01 101 -34.64 .-32 89.97 -

36 -13.56 -13.7 12.94 17 -35.61 -28.5 - 35.90 36
37 -13.56 -13.6 12.94 14 -35.61 -26 144.10 -100
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low levels, which would tend to have a minor effect on pattern

characteristics. Some errors in the more strongly excited slots

also exist but it was decided to make pattern measurements with
these distributions rather than to attempt further refinement.

6.4.2 Pattern Measurements

E-plane and H-plane pattern measurements were made in an

anechoic chamber. The cone was mounted horizontally for E-plane
measurements. Its base was sealed with aluminum foil and covered

with microwave absorbing material. The supporting structure was

also covered with absorber. For H-plane patterns the cone wae
mounted vertically and then tilted forward by 900-Op. The unit

-p
was then rotated about a vertical axis thereby giving the cut

illustrated in Figure 14 of Chapter 2. The base was covered with
microwave absorber. The array is shown mounted for this cut in

Figure 15.

The measured E-plane and H-plane patterns for the beam 50
degrees off the cone axis are shown in Figures 16a and b. The

calculated patterns are superimposed for comparison. It is seen

that the agreement is excellent although the sidelobe levels of
the measured patterns are somewhat higher than those of the

calculated patterns. In addition the polarization was found to
be tilted from the correct value by approximately 13 degrees. It

is believed that an improved probe design would eliminate the

polarization tilt and that a more accurate setting of the relative

slot excitations would improve the agreement between measured

and calculated sidelobes. Some of the fine detail on the sidelobes

may be due to low level reflections in the chamber. Some of the
ripples near 0 equal to zero may also bo duo to tip diffraction,

which is not accounted for in the calculated patterns. The

cross polarized patterns in the E-plane and H-plane relative to
the tilted polarization are shown in Figures 17a and b. If the
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Fig. 15 *Array positioned for measurement of H-plane pattern. (4R-54374)

389



4- -

0
L20

10

21 
CALCULATED

4 4

Mo

J

I I

3:

2
S4 nf

""0" 120 90 6" i
40 I LI

1800 1500 1200 goo 600 300 00 300 600 9g0 1200 1800 1800
9

a) F-PLANE

0'

2

4
6I

10 - CALCULATED
2 PATTERN

4 I
0

M 20
2-

3-0

4o i , r\ I

S

40

1SO' 1800 1200 90g 600 300 00 300 60 900 1200 150° 1800

b) H-PLANE

Figure 16. Measured E-plane and H-plane patterns of conical
array (8p-50°).

390

I - - -... ... .....--. -- - --



2

4

00
20

-C 4 -

30m

40

'* 20

S2

44

10

2
4

6

20

> 2

4

Uj 6

2

84

w

3891
Ob0



excitation were truly correct there would be no cross polarized

radiation in the E-plane. However, excitation errors introduce

some cross polarization.

A similar set of patterns was made for the beam directed

normal to the cone generatrix (0p = 79.750). The patterns are

shown in Figures 18 and 19. The calculated patterns are also

superimposed on Figures 18a and b for comparison. Once again

agreement is excellent. As before, a polarization tilt was

measured. Its value was approximately 8 degrees. In Figure 18a

the calculated pattern appears to rise to a relatively high value

at e equals -10.250, that is, along the extension of the cone

generatrix. However the measured pattern falls approximately

6 dB below the calculated pattern at that point. This difference

is to be expected since the calculated pattern does not account

for tip diffraction. The tip diffraction effect in the E-plane

cut is analogous to diffraction of slot radiation by the edge of

a finite groundplane where the field along the extension of the

groundplane is reduced by 6 dB from the value it would have if no

diffraction were present.
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6.4.3 NOSC Measurements

The HAC conical array and projective synthesis computer code

were transferred to NOSC, where additional calculations and-
measurements were made. These measurements were for a beam

angle of 20 degrees from the axis, thereby complementing the
previous 5 and 80 degree cases. The 80 degree patterns were

duplicated as a check of the experimental setup. For the 20

degree beam angle, the phase and amplitude of the 32 element
virtual base array were projected to the conical surface using

the code described in Chapter 2. Array excitations were then
adjusted using an iterative procedure with a sampling probe to

the projected values. An improvement was made in the synthesis
code wherein the equivalent cylinder element patterns were
replaced by measured element patterns. To allow various

inclined patterns to be measured, the cone axis was mounted 20
degrees above horizontal. Behind the wedge holding the cone was

a roll axis (axis horizontal), and this rotator was mounted on

an azimuth over elevation rotator. See Figure 20. The patterns

are great circle cuts through the beam peak made in an inclined
plane of inclination angle T from vertical. x is measured at

the beam peak between the inclined plane and the E. vector.
Figure 20 shows the 8 -e relationship for T - 0, 30, 60, 90

degrees; supplementary values of T simply reverse *.

In the following graphs the computer pattern (using the
projected distribution) and the corresponding measured pattern

are presented as consecutive pairs. The patterns are in * (see I
Figure 14 of Chapter 2) for values of T of 0 through 90 degrees
at 15 degree intervals. Again supplementary T values should
give the same pattern with reversed i. The measured patterns

for 180-T have some discrepancies in the sidelobe region, as do

the calculated patterns, since the latter uses measured element
patterns.
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6.4.4 Conclusions from Measurements

Agreement between calculated and measured conical array
patterns was excellent for main beam regions, and satisfactory
for sidelobe regions. Both excitation errors and measurement
(site or chamber) errors contribute to the sidelobe eiscrepanýAes.
Effects of diffraction were reduced by using element patterns
that were a function of distance from the cone tip; tip diffrac-
tion for this model, which had no slots close to the tip, was
difficult to identify. Effects of mutual coupling were removed
by the adjustment of excitation to the prescribed amplitude and

phase. The program has demonstrated that the synthesis technique
provides slot excitations that will produce patterns approximat-
ing desired patterns, and that such patterns can be obtained
experimentally.
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GLOSSARY OF MAJOR SYMBOLS

a slot length, cylindrical radius
b slot width

Chebyshev coefficient

d ring-to-ring spacing

E electric field
F n element pattern Fourier coefficient

G element pattern
H magnetic field

Hn Hankel function

h spherical Hankel function

I current or excitation
J electric current source
3 Bessel functionV
iv spherical Bessel function

k free space wave number
Y. slot length
M number of elements, magnetic current source

N number of elements

p V M associated Legendre function

Q active element pattern
rO ,# spherical coordinates

Si scattering coefficient
interelement spacing, arc length

Tn Chebyshev polynomial

uv Fock function

V applied voltage
x,yz rectangular coordinates

RY,2 unit vectors

Y admittance
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0 angular location of element

Kronecker delta

Neumann number

wavelength

distance parameter

p cylindrical radius

T ray curvature parameter, pattern inclination angle

* Eulerian angle

I

*U.8. GOVIERNMENT PRINTING OPIE: 19 e 1 5 0 5 0 9 9 1 6 7 1
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